РазделыВ сетиПользователей: 125
Из них просматривают: Аналоги: 50. Даташиты: 37. Инструкции: 3. Новости: 11. Остальное: 4. Ошибки: 3. Программы: 3. Производители: 1. Профиль пользователя: 1. Форум: 11. Чат: 1. Участников: 3 Гостей: 122 an , Google , Яндекс , далее... Рекорд 2375 человек онлайн установлен 26.12.2015. Новые объявления В настоящее время нет объявлений.
|
Рис. 2
Рис. 3
Рис. 4
![]() Рис. 5. Пиродатчик в корпусе. общий вид На вторые входы компараторов поданы опорные напряжения 0,5VRef=0,5x5V=2,5V и 0,6VRef=0,6x5V=3,0V. Таким образом, напряжение окна равно 3,0V-2,5V=0,5V. С вывода 8 (VRef) снимается напряжение 5V и сглаживается конденсатором С2. Это напряжение используется для питания схемы пироэлектрического датчика. На вывод 6 подаётся выходной сигнал от схемы датчика.
со стороны элементов Плата крепится к корпусу с помощью одного винтика как показано на рис. 7. После подключения схемы датчика к отдельному источнику питания +5В, датчик оказался в рабочем состоянии. Теперь осталось посмотреть, что происходит на выходе схемы датчика. На рис. 8 показана эпюра выходного напряжения, снятая осциллографом. В исходном состоянии, когда в зоне датчика нет перемещения инфракрасного излучения, т.е. живого объекта (именно перемещения – пироэлектрические датчики реагируют на изменение тепловой обстановки только в динамическом режиме!), на выходе присутствует некий средний уровень напряжения +2,1В. Этот участок на графике обозначен как 0 – t1. При медленном приближении руки к датчику, выходное напряжение стало плавно уменьшаться (участок t1 – t2). Когда движение было остановлено, выходное напряжение вернулось к исходному уровню +2,1В.
Френеля снят При быстром приближении руки выходное напряжение резко снизилось до нулевого уровня (участок t3 – t4), а затем, вновь вернулось к исходному уровню +2,1В. Такая же картинка наблюдалась при удалении руки от датчика, только выходное напряжение теперь увеличивалось. Для плавного движения показан участок t5 – t6, а для быстрого – участок t7 - t8. Для отслеживания уровня выходного напряжения датчика как вверх, так и вниз и предназначено триггерное окно в микросхеме U2100B.
Рис. 8.
Рис. 9
Рис. 10
Замеренный ток потребления датчиком при питании напряжением 5В равен 1-ому миллиамперу. Малое потребление тока датчиком и схемой преобразователя позволяет их использовать в конструкциях с бестрансформаторным питанием. Например, устройство, рассмотренное в теме «Микросхема К145АП2 для пиродатчика», где использовался пироэлектрический датчик от сигнализационной системы, не может заменить стенной выключатель в квартире из-за включения схемы параллельно лампе накаливания. С данным преобразователем и датчиком появляется возможность замены. Эксперимент показан на рис. 11.
Рис. 11. Эксперименты на макетной плате
Пример схемы включения рассмотренного преобразователя совместно с микросхемой К145АП2 приведён на рис. 12. В схему добавлен стабилизатор DA2, формирующий питание датчика и преобразователя. Транзистор VT5 инвертирует сигнал и согласует логические уровни напряжений на выходе преобразователя и на входе схемы – формирователя управляющих сигналов DD1. Так как теперь вся схема включена параллельно симистору, она может заменить собой покупные пироэлектрические выключатели. В отличие от покупных выключателей, в которых лампа включается и выключается обычным образом, в варианте на микросхеме К145АП2 включение и выключение лампы плавное. Балластный конденсатор С8, возможно, придётся подобрать по минимальному току потребления устройством, при котором не будет нарушаться рабочий режим. В заключении можно отметить, что малое потребление мощности датчиком и преобразователем даёт возможность применять их в других радиолюбительских конструкциях, где требуется экономичный режим работы. Преобразователь также может применяться в конструкциях, в которых необходимо преобразовать переменный сигнал инфранизкой частоты в импульсный для дальнейшей обработки цифровыми схемами…
Комментарии принадлежат их авторам. Мы не несем ответственности за их содержание.
|
Похожие новости |