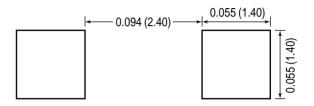


Vishay Semiconductors formerly General Semiconductor

Schottky Diodes


SOD-123

Features

- For general purpose applications.
- The SD103 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring.
- The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing, and coupling diodes for fast switching and low logic level applications.
- Other applications are click suppression, efficient full wave bridges in telephone subsets, and blocking diodes in rechargeable low voltage battery systems.
- This diode is also available in the MiniMELF case with the type designations LL103A to LL103C, DO-35 case with the type designations SD103A to SD103C and SOD-323 case with type designations SD103AWS to SD103CWS.

Mounting Pad Layout

Mechanical Data

Case: SOD-123 plastic case
Weight: approximately 0.01g
Marking SD103AW = S6
Code: SD103BW = S7
SD103CW = S8

Packaging Codes/Options:

D3/10K per 13" reel (8mm tape), 30K/box D4/3K per 7" reel (8mm tape), 30K/box

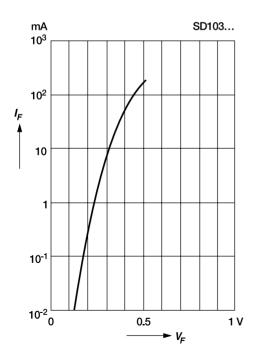
Maximum Ratings and Thermal Characteristics (TC = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
S	D103AW D103BW D103CW	Vrrm	40 30 20	V
Power Dissipation (Infinite Heat Sink)		Ptot	400 ⁽¹⁾	mW
Single Cycle Surge 10µs Square Wave		I _{FSM}	2	А
Thermal Resistance Junction to Ambient Air		Reja	300 ⁽¹⁾	°C/W
Junction Temperature		Tj	125 ⁽¹⁾	°C
Storage Temperature Range		Ts	-55 to +150 ⁽¹⁾	°C

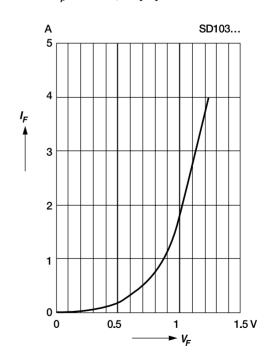
Note: (1) Valid provided that electrodes are kept at ambient temperature

SD103AW thru SD103CW

Vishay Semiconductors formerly General Semiconductor



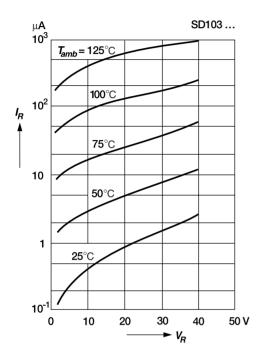
Electrical Characteristics (TJ = 25°C unless otherwise noted)

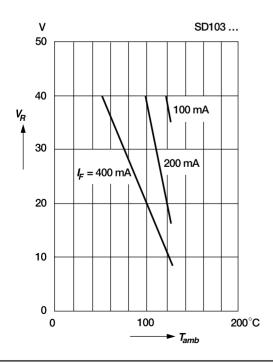

Parameter		Symbol	Test Condition	Min	Тур	Max	Unit
Leakage Current	SD103AW SD103BW SD103CW	I _R	V _R = 30V V _R = 20V V _R = 10V	_ _ _	_ _ _	5 5 5	μА
Forward Voltage Drop		VF	I _F = 20mA I _F = 200mA	_	_	0.37 0.6	V
Junction Capacitance		C _{tot}	V _R = 0V f = 1MHz	_	50	_	pF
Reverse Recovery Time		trr	IF = IR = 50mA to 200mA recover to 0.1IR	_	10	_	ns

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

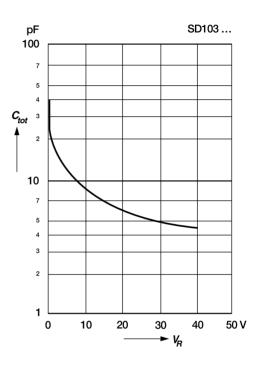
Typical variation of fwd. current vs. fwd. voltage for primary conduction through the Schottky barrier

Typical high current forward conduction curve $t_p = 300 \text{ ms}$, duty cycle = 2%




Vishay Semiconductors formerly General Semiconductor

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)


Typical variation of reverse current at various temperatures

Blocking voltage deration versus temperature at various average forward currents

Typical capacitance versus reverse voltage

