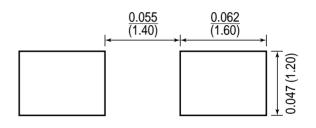

SD103AWS thru SD103CWS

New Product


Vishay Semiconductors formerly General Semiconductor

Mounting Pad Layout

Features

- · For general purpose applications.
- The SD103 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring.
- The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing, and coupling diodes for fast switching and low logic level applications.
- This diode is also available in the MiniMELF case with the type designations LL103A to LL103C, DO-35 case with the type designations SD103A to SD103C and SOD-123 case with type designations SD103AW to SD103CW.

Mechanical Data

Case: SOD-323 plastic case
Weight: approximately 0.004g
Marking SD103AWS = S6
Code: SD103BWS = S7
SD103CWS = S8

Packaging Codes/Options:

D5/10K per 13" reel (8mm tape), 30K/box D6/3K per 7" reel (8mm tape), 30K/box

Maximum Ratings and Thermal Characteristics (TC = 25°C unless otherwise noted)

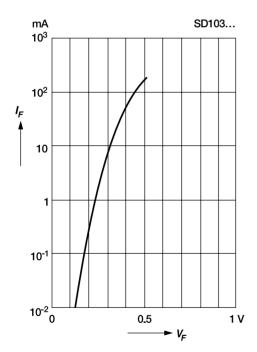
Parameter		Symbol	Value	Unit	
Peak Inverse Voltage	SD103AWS SD103BWS SD103CWS	Vrrm	40 30 20	V	
Power Dissipation (Infinite Heat Sink)		Ptot	150 ⁽¹⁾	mW	
Maximum Single Cycle Surge 10μs Square Wave		IFSM	2	А	
Thermal Resistance Junction to Ambient Air		$R_{ heta JA}$	650 ⁽¹⁾	°C/W	
Junction Temperature		Tj	125 ⁽¹⁾	°C	
Storage Temperature Range		Ts	-55 to +150 ⁽¹⁾	°C	

Note

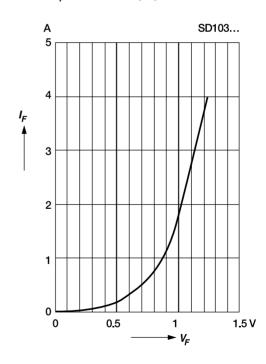
(1) Valid provided that electrodes are kept at ambient temperature

SD103AWS thru SD103CWS

Vishay Semiconductors formerly General Semiconductor



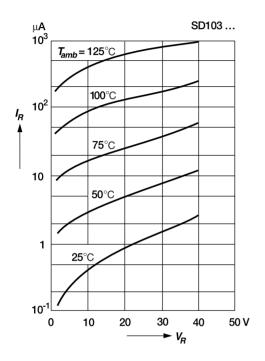
Electrical Characteristics (TJ = 25°C unless otherwise noted)

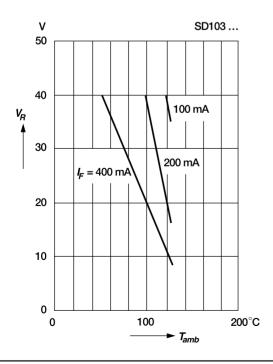

Parameter		Symbol	Test Condition	Min	Тур	Max	Unit
Leakage Current	SD103AWS SD103BWS SD103CWS	I _R	V _R = 30V V _R = 20V V _R = 10V	_ _ _	_ _ _	5 5 5	μА
Forward Voltage Drop		VF	I _F = 20mA I _F = 200mA	_	_	0.37 0.6	V
Junction Capacitance		C _{tot}	V _R = 0V f = 1MHz	_	50	_	pF
Reverse Recovery Time		trr	IF = IR = 50mA to 200mA recover to 0.1IR	_	10	_	ns

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

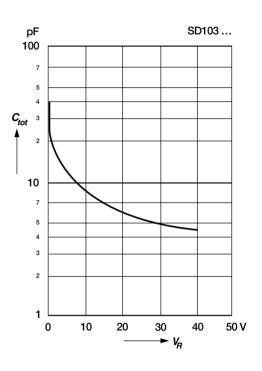
Typical variation of fwd. current vs. fwd. voltage for primary conduction through the Schottky barrier

Typical high current forward conduction curve $t_p = 300 \text{ ms}$, duty cycle = 2%




Vishay Semiconductors formerly General Semiconductor

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)


Typical variation of reverse current at various temperatures

Blocking voltage deration versus temperature at various average forward currents

Typical capacitance versus reverse voltage

