

SPICE Device Model Si6802DQ

Vishay Siliconix

N-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71576 www.vishay.com 25-Feb-99

SPICE Device Model Si6802DQ

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	0.95	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	46	А
		$V_{DS} \ge 5 \text{ V}, V_{GS} = 3 \text{ V}$	18	
Drain-Source On-State Resistance ^a	_	V_{GS} = 4.5 V, I_{D} = 3.3 A	0.148	Ω
	r _{DS(on)}	$V_{GS} = 3.0 \text{ V}, I_D = 2.7 \text{ A}$	0.061	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 10 \text{ V}, I_{D} = 3.3 \text{ A}$	9.7	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 1.25 \text{ A}, V_{GS} = 0 \text{ V}$	0.71	V
Dynamic ^b				
Total Gate Charge	Q_g	$V_{DS} = 6 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 0.3 \text{ A}$	4.2	nC
Gate-Source Charge	Q_{gs}		1	
Gate-Drain Charge	Q_{gd}		0.7	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 6 V, R_L = 20 Ω I_D \cong 0.3 A, V_{GEN} = 4.5 V, R_G = 6 Ω I_F = 1.25 A, di/dt = 100 A/μs	8	ns
Rise Time	t _r		10	
Turn-Off Delay Time	$t_{\sf d(off)}$		13	
Fall Time	t _f		39	
Source-Drain Reverse Recovery Time	t _{rr}		51	

www.vishay.com Document Number: 71576 25-Feb-99

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.

Document Number: 71576 www.vishay.com 25-Feb-99 3