

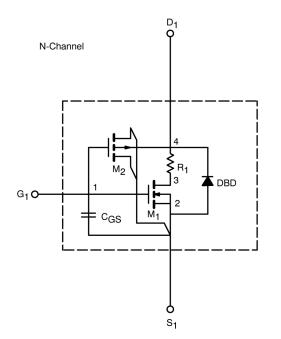
SPICE Device Model Si9928DY

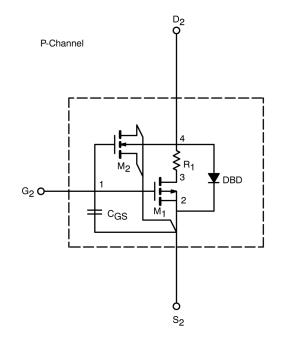
Vishay Siliconix

N- and P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- · Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The model subcircuit schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Vishay Siliconix

/ishay Siliconix					
SPECIFICATIONS (T _J = 25°C	UNLESS OTHE	RWISE NOTED)			
Parameter	Symbol	Test Condition		Typical ^a	Unit
Static					
Gate Threshold Voltage	N N	$V_{DS} = V, V_{GS}, I_D = 250 \ \mu A$	N-Ch		
	V _{GS(th)}	$V_{DS} = V, V_{GS}, I_D = -250 \ \mu A$	P-Ch		
On-State Drain Current ^b		V _{DS} V, V _{GS} = V	N-Ch		A
	I _{D(on)}	V_{DS} = $-V$, V_{GS} = $-V$	P-Ch		
Drain-Source On-State Resistance ^b		V_{GS} = 4.5 V, I _D = 5 A	N-Ch	0.044	Ω
		V_{GS} = -4.5 V, I _D = -3.2 A	P-Ch	.056	
		V_{GS} = 3.0 V, I _D = 3.9 A	N-Ch	0.051	
	r _{DS(on)}	V_{GS} = -3.0 V, I _D = -2.0 A	P-Ch	0.084	
		V_{GS} = 2.5 V, I _D = 1 A	P-Ch	0.056	
		V_{GS} = -2.7V, I_D = -1 A	P-Ch	0.096	
Forward Transconductance ^b		V_{DS} = 10 V, I_{D} = 5 A	N-Ch	15	S
	9 _{fs}	$V_{DS} = -9 V$, $I_{D} = -3.4 A$	P-Ch	9.3	

Forward Transconductance	9 _{fs}	$V_{DS} = -9 V$, $I_{D} = -3.4 A$	P-Ch	9.3	s
Diode Forward Voltage ^b	V _{SD}	$I_{\rm S}$ = 5 A, $V_{\rm GS}$ = 0 V	N-Ch	0.84	V
		$I_{\rm S}$ = -2 V, $V_{\rm GS}$ = 0 V	P-Ch	-0.74	v
Dynamic ^a					
Total Gate Charge	Qg	N-Channel	N-Ch	8	
			P-Ch	8.9	
Gate-Source Charge	Q _{gs}	$V_{DS} = 6 V, V_{GS} = 4.5 V, I_{D} = 5 A$	N-Ch	2	nC
		P-Channel	P-Ch	2.1	
Gate-Drain Charge	Q _{gd}	V_{DS} = -6 V, V_{GS} = -4.5 V, I_D = -3.2 A	N-Ch	2.4	
			P-Ch	3.3	
Turn-On Delay Time	t _{d(on)}		N-Ch	24	
			P-Ch	12	
		N-Channel	N-Ch	19	
Rise Time	tr	V_{DD} =6 V, R_L = 6 Ω	P-Ch	19	
		$I_D \cong 1 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_G = 6 \Omega$	N-Ch	30	
Turn-Off Delay Time	$t_{d(off)}$	P-Channel $V_{DD} = -6 V, R_1 = 6 \Omega$	P-Ch	46	ns
		$I_D \cong -1 \text{ A}, \text{V}_{\text{GEN}} = -4.5 \text{ V}, \text{R}_{\text{G}} = 6 \Omega$	N-Ch	13	
Fall Time	t _f		P-Ch	60	
			N-Ch	64	
Source-Drain Reverse Recovery Time	t _{rr}	I_F = A, I_S = 1.25A, di/dt = 100 A/µs	P-Ch	53	

Notes

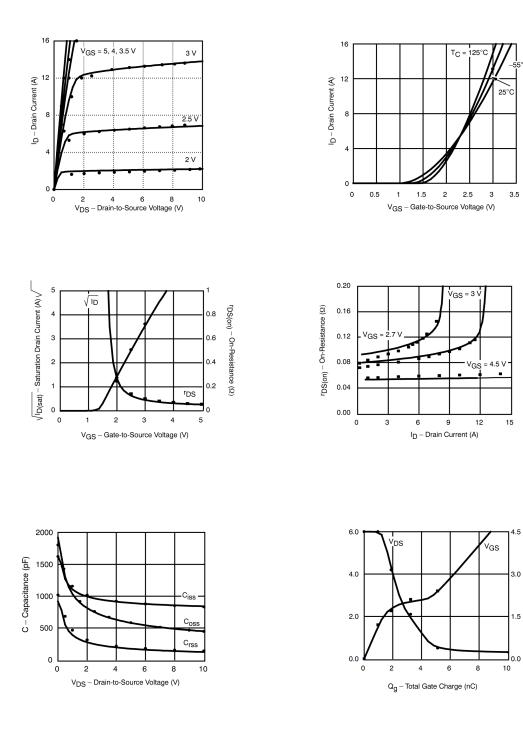
a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%.

SPICE Device Model Si9928DY

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)


N-Channel

Note: Dots and squares represent measured data.

Vishay Siliconix

P-Channel

Note: Dots and squares represent measured data.

www.vishay.com

°C