

# Precision Instrumentation Amplifier In a Micro SOIC Package

# **Preliminary Technical Data**

AD8221

#### **FEATURES:**

Excellent Noise Immunity:
EXCELLENT AC and DC PERFORMANCE
70dB Minimum CMRR DC to 10kHz (G=1 ARM)
80dB Minimum CMRR DC to 10kHz (G=1 BRM)

0.8 μV/°C Max Input Offset Drift (BRM) 10 ppm/°C Max Gain Drift (G=1 ARM) 7nV/√Hz RTI Input Noise

Supply Voltage Range:

Dual Supply ±2.3V to ±18V

Single Supply 4.6V to 36V

APPLICATIONS
Patient Monitor
Sensor Signal Conditioning
Bridge Transducer
Multiplexed Systems
4 to 20mA Converter

### 

CONNECTION DIAGRAM
8-Pin Plastic Micro SOIC: ARM, BRM Package

## **GENERAL DESCRIPTION**

The AD8221 is a gain programmable, high performance instrumentation amplifier in a micro SOIC package. It provides the user with the highest CMRR over frequency available. This break through performance allows the user to reject common mode voltage noise out to 100 kHz. Moreover, the AD8221's small outline package saves valuable board space.

Errors in the user's system will be held to minimum with the high CMRR over frequency performance. Noise, as well as harmonics, encountered in aerospace applications, motors and repair equipment on factory floors, switching power supplies, and high frequency medical equipment will be rejected since the CMRR rejection is 100dB (G=10, BRM) minimum to 10kHz with great performance out to 100kHz.

#### **REV.PrB 1/03**

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

The AD8221BRM also gives the user excellent DC performance by providing maximum offset and gain drift of  $0.3\mu\text{V/}^{\circ}\text{C}$  and  $10 \text{ ppm/}^{\circ}\text{C}$  (G=1) respectively.

The AD8221 operates on both single and dual supplies. The device is specified for operation at a power supply voltage of  $\pm 15$ V and makes the AD8221 well suited for applications where input voltages of  $\pm 10$ Vare encountered.

The AD8221 is specified over the standard industrial temperature range, -40°C to +85°C.

One Technology Way,P.O.Box 9106,Norwood,MA 02062-9106,U.S.A. Tel:781/329-4700 www.analog.com Fax:781/326-8703 © 2003 Analog Devices, Inc. All rights reserved

**AD8221–SPECIFICATIONS** (T  $_A = 25C$ ,  $V_S = \pm 15V$  and  $R_L = 10k\Omega$  unless otherwise noted)

|                                        |                                       | AD8221<br>ARM        |          |                      | L = 10kΩ unless otherwise noted  AD8221 BRM |          |                      |                        |
|----------------------------------------|---------------------------------------|----------------------|----------|----------------------|---------------------------------------------|----------|----------------------|------------------------|
| Parameter                              | Conditions                            | Min                  | Тур      | Max                  | Min                                         | Тур      | Max                  | Units                  |
| GAIN                                   | G = 1+                                | IVIIII               | 1,7,5    | With                 | 141111                                      | Тур      | With                 | Omts                   |
| Gain Range                             | (49.9k/R <sub>G</sub> )               | 1                    |          | 1000                 |                                             |          | <u> </u>             | V/V                    |
| Gain Error                             | V <sub>o</sub> =±10V                  | 1                    |          | 1000                 |                                             |          |                      | *, *                   |
| G = 1                                  | V <sub>0</sub> -±10 V                 |                      |          | 0.10                 |                                             |          | 0.10                 | %                      |
| G = 10                                 |                                       |                      |          | 0.10                 |                                             |          | 0.10                 | %                      |
| G = 100                                |                                       |                      |          | 0.35                 |                                             |          | 0.35                 | %                      |
| G = 1000                               |                                       |                      |          | 0.35                 |                                             |          | 0.35                 | %                      |
| Gain Nonlinearity                      | V <sub>0</sub> =±10V                  |                      |          |                      |                                             |          |                      |                        |
| G = 1 - 1000                           | $R_L = 10k\Omega$                     |                      | 10       | 40                   |                                             | 10       | 40                   | ppm                    |
| ±Gain vs. Temperature                  | TL - TORBE                            |                      |          |                      |                                             |          |                      | **                     |
| G=1                                    |                                       | +                    | 3        | 10                   |                                             | 3        | 10                   | ppm/°C                 |
| G>1                                    |                                       |                      |          | 50                   |                                             |          | 50                   | 1                      |
|                                        | T-4-1 DTI E                           |                      |          | 30                   |                                             |          | 30                   | ppm/°C                 |
| VOLTAGE OFFSET                         | Total RTI Error                       |                      |          |                      |                                             |          |                      |                        |
|                                        | $V_{OSI} + V_{OSO}/G$                 |                      |          | 500                  |                                             |          | 170                  |                        |
| Input Offset, V <sub>OSI</sub>         |                                       |                      |          | 500                  |                                             |          | 150                  | μV                     |
| Average TC                             |                                       |                      |          | 2                    |                                             |          | 0.8                  | μV/°C                  |
| Output Offset, V <sub>OSO</sub>        |                                       |                      |          | 1000                 |                                             |          | 350                  | μV                     |
| Average TC                             |                                       |                      |          | 10                   |                                             |          | 5                    | μV/°C                  |
| Offset Referred to the                 |                                       |                      |          |                      |                                             |          |                      |                        |
| Input<br>VS. Supply (PSR)              |                                       | +                    |          |                      |                                             |          |                      |                        |
| G = 1                                  |                                       | 80                   | 100      |                      | 80                                          | 100      |                      | dB                     |
| G = 10                                 |                                       | 100                  | 120      |                      | 100                                         | 120      |                      | dB                     |
| G = 100                                |                                       | 120                  | 140      |                      | 120                                         | 140      |                      | dB                     |
| G = 1000                               |                                       | 120                  | 140      |                      | 120                                         | 140      |                      | dB                     |
| INPUT                                  |                                       |                      |          |                      |                                             |          |                      |                        |
| Input Operating Impedance Differential |                                       |                      | 10011.0  |                      |                                             | 10011.2  |                      | GOU E                  |
|                                        |                                       |                      | 100   2  |                      |                                             | 100   2  |                      | GΩ∥ pF                 |
| Common Mode                            |                                       |                      | 100   2  |                      |                                             | 100   2  |                      | $G\Omega \parallel pF$ |
| Input Operating Voltage<br>Range       | $V_s = \pm 3V$ to $\pm 18V$           | -Vs +1.9             |          | +V <sub>S</sub> -1.4 | -V <sub>s</sub> +1.9                        |          | +V <sub>S</sub> -1.4 | V                      |
|                                        |                                       |                      |          |                      |                                             |          |                      |                        |
| Input Bias Current                     |                                       |                      | 0.5<br>3 | 2                    |                                             | 0.5<br>3 | 2                    | nA                     |
| VS. Temperature                        |                                       |                      |          |                      |                                             |          |                      | pA/°C                  |
| Input Offset Current                   |                                       |                      | 0.3      | 1                    |                                             | 0.3      | 1                    | nA                     |
| VS. Temperature                        |                                       |                      | 1.5      |                      |                                             | 1.5      |                      | pA/°C                  |
| Common Mode Rejection                  |                                       |                      |          |                      |                                             |          |                      |                        |
| from                                   |                                       |                      |          |                      |                                             |          |                      |                        |
| 60Hz                                   |                                       |                      |          |                      |                                             |          |                      |                        |
| with 1kΩ Source                        | $V_{CM} = 0V \text{ to}$<br>$\pm 10V$ |                      |          |                      |                                             |          |                      |                        |
| Imbalance                              | ±10 V                                 | 70                   |          |                      | 80                                          |          |                      | dB                     |
| G = 1 $G = 10$                         |                                       | 90                   |          |                      | 100                                         |          | <u> </u>             | dB                     |
| G = 100                                |                                       | 110                  |          |                      | 120                                         |          | 1                    | dB                     |
| G = 1000<br>G = 1000                   |                                       | 120                  |          |                      | 130                                         |          | 1                    | dB                     |
| 10kHz                                  |                                       |                      |          |                      |                                             |          |                      |                        |
| G = 1                                  |                                       | 70                   |          |                      | 80                                          |          |                      | dB                     |
| G = 10                                 |                                       | 90                   |          |                      | 100                                         |          |                      | dB                     |
| G = 100                                |                                       | 110                  |          |                      | 120                                         |          |                      | dB                     |
| G = 1000                               |                                       | 110                  |          |                      | 120                                         |          |                      | dB                     |
| OUTPUT                                 |                                       |                      |          |                      |                                             |          |                      |                        |
| Output Swing                           | $R_L = 10k\Omega$                     | ±13V                 |          |                      |                                             |          |                      |                        |
|                                        | $V_s = \pm 5V$ to $\pm 18V$           | -V <sub>s</sub> +1.2 |          | V <sub>s</sub> -1.4  |                                             |          |                      | V                      |
| DYNAMIC RESPONSE                       |                                       |                      |          |                      |                                             |          |                      |                        |
| Small Signal -3dB<br>Bandwidth         |                                       |                      |          |                      |                                             |          |                      |                        |

2 REV.PrB

|                                 |                                            | 1000                                                  |                                                       |                                                       | 1000 |                                                        | kHz    |
|---------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------|--------------------------------------------------------|--------|
|                                 | AD8221<br>ARM                              |                                                       |                                                       | AD8221<br>BRM                                         |      |                                                        |        |
| Conditions                      | Min                                        | Тур                                                   | Max                                                   | Min                                                   | Тур  | Max                                                    | Units  |
|                                 |                                            |                                                       |                                                       |                                                       |      |                                                        | kHz    |
|                                 |                                            |                                                       |                                                       |                                                       |      |                                                        | kHz    |
|                                 |                                            | 12                                                    |                                                       |                                                       | 12   |                                                        | kHz    |
| 10V Step                        |                                            |                                                       |                                                       |                                                       |      |                                                        | †      |
|                                 |                                            | 15                                                    |                                                       |                                                       | 15   |                                                        | μS     |
|                                 |                                            | 150                                                   |                                                       |                                                       | 150  |                                                        | μS     |
| G=1                             | 1.7                                        | 2                                                     |                                                       | 1.7                                                   | 2    |                                                        | V/µS   |
| G=5                             | 2                                          | 2.5                                                   |                                                       | 2                                                     | 2.5  |                                                        |        |
|                                 |                                            |                                                       |                                                       |                                                       |      |                                                        |        |
|                                 |                                            |                                                       |                                                       |                                                       |      |                                                        |        |
|                                 |                                            | 2                                                     |                                                       |                                                       | 2    |                                                        | μV p-p |
|                                 |                                            | 0.4                                                   |                                                       |                                                       | 0.4  |                                                        | μV p-p |
|                                 |                                            | 0.25                                                  |                                                       |                                                       | 0.25 |                                                        | μV p-p |
|                                 |                                            |                                                       |                                                       |                                                       |      |                                                        |        |
|                                 |                                            | 7                                                     | 10                                                    |                                                       | 7    | 10                                                     | nV/√Hz |
|                                 |                                            | 50                                                    | 75                                                    |                                                       | 50   | 75                                                     | nV/√Hz |
|                                 |                                            |                                                       |                                                       |                                                       |      |                                                        |        |
|                                 | ±2.3                                       |                                                       | ±18                                                   | ±2.3                                                  |      | ±18                                                    | V      |
| $V_s = \pm 2.3 V$ to $\pm 18 V$ |                                            | 0.9                                                   | 1                                                     |                                                       | 0.9  | 1                                                      | mA     |
|                                 |                                            |                                                       |                                                       |                                                       |      |                                                        |        |
|                                 | -40                                        |                                                       | +85                                                   | -40                                                   |      | +85                                                    | °C     |
|                                 | $I0V$ Step $G=1$ $G=5$ $V_s = \pm 2.3V$ to | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ARM  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ARM    |

3 REV.PrB