## Precision Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers <br> AD8605/AD8606/AD8608*

## FEATURES

Low Offset Voltage: $65 \mu \mathrm{~V}$ Max
Low Input Bias Currents: 1 pA Max
Low Noise: $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Wide Bandwidth: 10 MHz
High Open-Loop Gain: 120 dB
Unity Gain Stable
Single-Supply Operation: 2.7 V to 6 V

## APPLICATIONS

Photodiode Amplification
Battery-Powered Instrumentation
Multipole Filters

## Sensors

Barcode Scanners
Audio

## GENERAL DESCRIPTION

The AD8605, AD8606, and AD8608 are single, dual, and quad rail-to-rail input and output, single-supply amplifiers that feature very low offset voltage, low input voltage and current noise, and wide signal bandwidth. They use Analog Devices' patented DigiTrim ${ }^{\circledR}$ trimming technique, which achieves superior precision without laser trimming.

The combination of low offsets, low noise, very low input bias currents, and high speed makes these amplifiers useful in a wide variety of applications. Filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from the combination of performance features. Audio and other ac applications benefit from the wide bandwidth and low distortion. Applications for these amplifiers include optical control loops, portable and loop-powered instrumentation, and audio amplification for portable devices.
The AD8605, AD8606, and AD8608 are specified over the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature range. The AD8605 single is available in the tiny 5-lead SOT-23 package. The AD8606 dual is available in an 8-lead MSOP and a narrow SOIC surface-mount package. The AD8608 quad is available in a 14-lead TSSOP and a narrow 14-lead SOIC package. SOT, MSOP, and TSSOP versions are available in tape and reel only.

[^0]REV. A

## AD8605/AD8606/AD8608-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS ( $V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{S} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS <br> Offset Voltage AD8605/AD8606 AD8608 | $\mathrm{V}_{\mathrm{OS}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \\ & 80 \end{aligned}$ | $\begin{aligned} & 65 \\ & 75 \\ & 300 \\ & 750 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$ |
| Input Bias Current <br> AD8605/AD8606 <br> AD8605/AD8606 <br> AD8608 <br> AD8608 | $\mathrm{I}_{\mathrm{B}}$ | $\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ |  | $0.2$ | $\begin{aligned} & 1 \\ & 50 \\ & 250 \\ & 100 \\ & 300 \end{aligned}$ | pA <br> pA <br> pA <br> pA <br> pA |
| Input Offset Current | $\mathrm{I}_{\mathrm{OS}}$ | $\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ |  | $0.1$ | $\begin{aligned} & 0.5 \\ & 20 \\ & 75 \end{aligned}$ | pA <br> pA <br> pA |
| Input Voltage Range Common-Mode Rejection Ratio | CMRR | $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0 \\ & 85 \\ & 75 \end{aligned}$ | $\begin{aligned} & 100 \\ & 90 \end{aligned}$ | 5 | V <br> dB <br> dB |
| Large Signal Voltage Gain | $\mathrm{A}_{\mathrm{Vo}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$ | 300 | $1,000$ |  | $\mathrm{V} / \mathrm{mV}$ |
| Offset Voltage Drift <br> AD8605/AD8606 <br> AD8608 | $\begin{aligned} & \Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T} \\ & \Delta \mathrm{~V}_{\mathrm{OS}} / \Delta \mathrm{T} \end{aligned}$ |  |  | $\begin{aligned} & 1 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| INPUT CAPACITANCE <br> Common-Mode Input Capacitance Differential Input Capacitance |  |  |  | $\begin{aligned} & 8.8 \\ & 2.59 \end{aligned}$ |  | $\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$ |
| OUTPUT CHARACTERISTICS <br> Output Voltage High <br> Output Voltage Low <br> Output Current Closed-Loop Output Impedance | $\mathrm{V}_{\mathrm{OH}}$ <br> $\mathrm{V}_{\mathrm{OL}}$ <br> $\mathrm{I}_{\text {OUT }}$ <br> $\mathrm{Z}_{\text {OUT }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$ | $\begin{aligned} & 4.96 \\ & 4.7 \\ & 4.6 \end{aligned}$ | $\begin{aligned} & 4.98 \\ & 4.79 \\ & 20 \\ & 170 \\ & \pm 80 \\ & 10 \end{aligned}$ | 40 <br> 210 <br> 290 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{~mA} \\ & \Omega \end{aligned}$ |
| POWER SUPPLY <br> Power Supply Rejection Ratio AD8605/AD8606 <br> AD8608 <br> Supply Current/Amplifier | PSRR $\mathrm{I}_{\mathrm{SY}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 80 \\ & 77 \\ & 70 \end{aligned}$ | $\begin{aligned} & 95 \\ & 92 \\ & 90 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$ | dB <br> dB <br> dB <br> mA <br> mA |
| DYNAMIC PERFORMANCE <br> Slew Rate <br> Settling Time <br> Full Power Bandwidth Gain Bandwidth Product Phase Margin | $\begin{aligned} & \mathrm{SR} \\ & \mathrm{t}_{\mathrm{S}} \\ & \mathrm{BW}_{\mathrm{P}} \\ & \mathrm{GBP} \\ & \varnothing_{\mathrm{O}} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { To } 0.01 \%, 0 \mathrm{~V} \text { to } 2 \mathrm{~V} \text { step } \\ & <1 \% \text { Distortion } \end{aligned}$ |  | $\begin{aligned} & 5 \\ & <1 \\ & 360 \\ & 10 \\ & 65 \end{aligned}$ |  | $\mathrm{V} / \mu \mathrm{s}$ <br> $\mu \mathrm{s}$ <br> kHz <br> MHz <br> Degrees |
| NOISE PERFORMANCE <br> Peak-to-Peak Noise Voltage Noise Density Voltage Noise Density Current Noise Density | $\begin{aligned} & \mathrm{e}_{\mathrm{n}} \mathrm{p}-\mathrm{p} \\ & \mathrm{e}_{\mathrm{n}} \\ & \mathrm{e}_{\mathrm{n}} \\ & \mathrm{i}_{\mathrm{n}} \end{aligned}$ | $\begin{aligned} & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ |  | $\begin{aligned} & 2.3 \\ & 8 \\ & 6.5 \\ & 0.01 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 12 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{V} \mathrm{p}-\mathrm{p} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$ |

ELECTRICAL CHARACTERISTICS
(@ $V_{S}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS <br> Offset Voltage <br> AD8605/AD8606 <br> AD8608 | $\mathrm{V}_{\mathrm{OS}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \\ & 80 \end{aligned}$ | $\begin{aligned} & 65 \\ & 75 \\ & 300 \\ & 750 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$ |
| $\begin{aligned} & \text { Input Bias Current } \\ & \text { AD8605/AD8606 } \\ & \text { AD8605/AD8606 } \\ & \text { AD8608 } \\ & \text { AD8608 } \end{aligned}$ | $\mathrm{I}_{\mathrm{B}}$ | $\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ |  | $0.2$ | $\begin{aligned} & 1 \\ & 50 \\ & 250 \\ & 100 \\ & 300 \end{aligned}$ | pA <br> pA <br> pA <br> pA <br> pA |
| Input Offset Current | $\mathrm{I}_{\mathrm{OS}}$ | $\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ |  | $0.1$ | $\begin{aligned} & 0.5 \\ & 20 \\ & 75 \end{aligned}$ | pA <br> pA <br> pA |
| Input Voltage Range Common-Mode Rejection Ratio | CMRR | $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0 \\ & 80 \\ & 70 \end{aligned}$ | $\begin{aligned} & 95 \\ & 85 \end{aligned}$ | $2.7$ | V <br> dB <br> dB |
| Large Signal Voltage Gain Offset Voltage Drift AD8605/AD8606 AD8608 | $\begin{aligned} & \mathrm{A}_{\mathrm{VO}} \\ & \Delta \mathrm{~V}_{\mathrm{OS}} / \Delta \mathrm{T} \\ & \Delta \mathrm{~V}_{\mathrm{OS}} / \Delta \mathrm{T} \end{aligned}$ | $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to 2.2 V | 110 | $\begin{aligned} & 350 \\ & 1 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| INPUT CAPACITANCE <br> Common-Mode Input Capacitance Differential Input Capacitance |  |  |  | $\begin{aligned} & 8.8 \\ & 2.59 \end{aligned}$ |  | $\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$ |
| OUTPUT CHARACTERISTICS <br> Output Voltage High <br> Output Voltage Low <br> Output Current <br> Closed-Loop Output Impedance | $\mathrm{V}_{\mathrm{OH}}$ <br> $\mathrm{V}_{\mathrm{OL}}$ <br> $\mathrm{I}_{\text {OUT }}$ <br> $\mathrm{Z}_{\text {OUT }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$ | $\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$ | $\begin{aligned} & 2.66 \\ & 25 \\ & \pm 30 \\ & 12 \end{aligned}$ | $\begin{aligned} & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{~mA} \\ & \Omega \end{aligned}$ |
| POWER SUPPLY <br> Power Supply Rejection Ratio AD8605/AD8606 AD8608 <br> Supply Current/Amplifier | PSRR $\mathrm{I}_{\mathrm{SY}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 80 \\ & 77 \\ & 70 \end{aligned}$ | $\begin{aligned} & 95 \\ & 92 \\ & 90 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 1.5 \end{aligned}$ | dB <br> dB <br> dB <br> mA <br> mA |
| DYNAMIC PERFORMANCE <br> Slew Rate Settling Time Gain Bandwidth Product Phase Margin | $\begin{aligned} & \mathrm{SR} \\ & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{GBP} \\ & \varnothing_{\mathrm{O}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{To} 0.01 \%, 0 \mathrm{~V} \text { to } 1 \mathrm{~V} \text { step } \end{aligned}$ |  | $\begin{aligned} & 5 \\ & <0.5 \\ & 9 \\ & 50 \end{aligned}$ |  | $\mathrm{V} / \mu \mathrm{s}$ <br> $\mu \mathrm{s}$ <br> MHz <br> Degrees |
| NOISE PERFORMANCE <br> Peak-to-Peak Noise Voltage Noise Density Voltage Noise Density Current Noise Density | $\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & e_{n} \\ & i_{n} \end{aligned}$ | $\begin{aligned} & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ |  | $\begin{aligned} & 2.3 \\ & 8 \\ & 6.5 \\ & 0.01 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 12 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{V} \mathrm{p}-\mathrm{p} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$ |

## AD8605/AD8606/AD8608

## ABSOLUTE MAXIMUM RATINGS*

| Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V |  |
| :---: | :---: |
| Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS |  |
| Differential Input Voltage |  |
| Output Short-Circuit Duration to GND | Observe Derating Curves |
| Storage Temperature Range |  |
| RN, RT, RM, RU Packages | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature Range |  |
| AD8605/AD8606/AD8608 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Junction Temperature Range |  |
| RN, RT, RM, RU Packages | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
|  | $60 \mathrm{sec})$. . . . . . . . $300^{\circ} \mathrm{C}$ |

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Package Type | $\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\boldsymbol{*}}$ | $\boldsymbol{\theta}_{\mathbf{J C}}$ | Unit |
| :--- | :--- | :--- | :--- |
| 5-Lead SOT-23 (RT) | 230 | 92 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 8-Lead MSOP (RM) | 210 | 45 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 8-Lead SOIC (RN) | 158 | 43 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 14-Lead SOIC (RN) | 120 | 36 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 14-Lead TSSOP (RU) | 180 | 35 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

${ }^{*} \theta_{\mathrm{JA}}$ is specified for worst-case conditions, i.e., $\theta_{\mathrm{JA}}$ is specified for device in socket for PDIP packages; $\theta_{J A}$ is specified for device soldered onto a circuit board for surface-mount packages.

ORDERING GUIDE

| Model | Temperature <br> Range | Package <br> Description | Package <br> Option | Branding <br> Information |
| :--- | :--- | :--- | :--- | :--- |
| AD8605ART | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 5-Lead SOT-23 | RT-5 | B3A |
| AD8606ARM | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead MSOP | RM-8 | B6A |
| AD8606ARN | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead SOIC | RN-8 |  |
| AD8608ARN | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 14-Lead SOIC | RN-14 |  |
| AD8608ARU | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 14-Lead TSSOP | RU-14 |  |

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8605/AD8606/AD8608 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## Typical Performance Characteristics-AD8605/AD8606/AD8608



TPC 1. Input Offset Voltage Distribution


TPC 2. AD8608 Input Offset Voltage Drift Distribution


TPC 3. AD8605/AD8606 Input Offset Voltage Drift Distribution


TPC 4. Input Offset Voltage vs. Common-Mode Voltage (200 Units, 5 Wafer Lots, Including Process Skews)


TPC 5. Input Bias Current vs. Temperature


TPC 6. Output Voltage to Supply Rail vs. Load Current

## AD8605/AD8606/AD8608



TPC 7. Output Voltage Swing vs. Temperature


TPC 8. Output Voltage Swing vs. Temperature


TPC 9. Open-Loop Gain and Phase vs. Frequency


TPC 10. Closed-Loop Output Voltage Swing


TPC 11. Output Impedance vs. Frequency


TPC 12. Common-Mode Rejection Ratio vs. Frequency


TPC 13. PSRR vs. Frequency


TPC 14. Small Signal Overshoot vs. Load Capacitance


TPC 15. Supply Current vs. Temperature


TPC 16. Supply Current vs. Supply Voltage


TIME-1s/DIV
TPC 17. 0.1 Hz to 10 Hz Input Voltage Noise


TPC 18. Small Signal Transient Response

## AD8605/AD8606/AD8608



TIME - 400ns/DIV
TPC 19. Large Signal Transient Response


TIME - 400ns/DIV
TPC 20. Negative Overload Recovery


TPC 21. Positive Overload Recovery


TPC 22. Voltage Noise Density


TPC 23. Voltage Noise Density


TPC 24. Voltage Noise Density


TPC 25. Input Offset Voltage Distribution


TPC 26. Input Offset Voltage vs. Common-Mode Voltage (200 Units, 5 Wafer Lots, Including Process Skews)


TPC 27. Output Voltage to Supply Rail vs. Load Current


TPC 28. Output Voltage Swing vs. Temperature


TPC 29. Output Voltage Swing vs. Temperature


TPC 30. Open-Loop Gain and Phase vs. Frequency


TPC 31. Closed-Loop Output Voltage Swing vs. Frequency


TPC 32. Output Impedance vs. Frequency


TPC 33. Small Signal Overshoot vs. Load Capacitance


TPC 34. 0.1 Hz to 10 Hz Input Voltage Noise


TIME - 200ns/DIV
TPC 35. Small Signal Transient Response


TIME - 400ns/DIV
TPC 36. Large Signal Transient Response

## Output Phase Reversal

Phase reversal is defined as a change in polarity at the output of the amplifier when a voltage that exceeds the maximum input common-mode voltage drives the input.
Phase reversal can cause permanent damage to the amplifier; it may also cause system lockups in feedback loops. The AD8605 does not exhibit phase reversal even for inputs exceeding the supply voltage by more than 2 V .


Figure 1. No Phase Reversal

## Maximum Power Dissipation

Power dissipated in an IC will cause the die temperature to increase. This can affect the behavior of the IC and the application circuit performance.
The absolute maximum junction temperature of the AD8605/ AD8606/AD8608 is $150^{\circ} \mathrm{C}$.
Exceeding this temperature could cause damage or destruction of the device.
The maximum power dissipation of the amplifier is calculated according to the following formula:

$$
P_{D I S S}=\frac{\left(T_{A}-T_{C}\right)}{\theta_{J A}-\theta_{J C}}
$$

where:
$T_{A}=$ ambient temperature
$T_{C}=$ case temperature (device)
$\theta_{J C}=$ junction to case thermal resistance
$\theta_{J A}=$ junction to ambient thermal resistance
Figure 2 shows the maximum power dissipation versus the temperature for the various packages available for the AD8605 family.


Figure 2. Maximum Power Dissipation vs. Temperature

## Input Overvoltage Protection

The AD8605 has internal protective circuitry. However, if the voltage applied at either input exceeds the supplies by more than 2.5 V , external resistors should be placed in series with the inputs. The resistor values can be determined according to the formula:

$$
\frac{\left(V_{I N}-V_{S}\right)}{\left(R_{S}+200 \Omega\right)} \leq 5 m A
$$

The remarkable low input offset current of the AD8605 ( $<1 \mathrm{pA}$ ) allows the use of larger value resistors. With a $10 \mathrm{k} \Omega$ resistor at the input, the output voltage will have less than 10 nV of error voltage. A $10 \mathrm{k} \Omega$ resistor has less than $13 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise at room temperature.

## THD + Noise

Total harmonic distortion is the ratio of the input signal in V rms to the total harmonics in V rms throughout the spectrum. Harmonic distortion adds errors to precision measurements and adds unpleasant sonic artifacts to audio systems.
The AD8605 has a low total harmonic distortion. Figure 3 shows that the AD8605 has less than $0.005 \%$ or -86 dB of THD +N over the entire audio frequency range. The AD8605 is configured in positive unity gain, which is the worst case, and with a load of $10 \mathrm{k} \Omega$.


Figure 3. $T H D+N$

## AD8605/AD8606/AD8608

## Total Noise Including Source Resistors

The low input current noise and input bias current of the AD8605 make it the ideal amplifier for circuits with substantial input source resistance such as photodiodes. Input offset voltage increases by less than 0.5 nV per $1 \mathrm{k} \Omega$ of source resistance at room temperature, increasing to 10 nV at $85^{\circ} \mathrm{C}$.
The total noise density of the circuit is:

$$
e_{n, T O T A L}=\sqrt{e_{n}^{2}+\left(i_{n} R_{S}\right)^{2}+4 k T R_{S}}
$$

Where:
$e_{n}$ is the input voltage noise density of the AD8605
$i_{n}$ is the input current noise density of the AD8605
$R_{S}$ is the source resistance at the noninverting terminal $-k$ is Boltzman's constant ( $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ )
$T$ is the ambient temperature in Kelvin $\left(\mathrm{T}=273+{ }^{\circ} \mathrm{C}\right)$
For example with $R_{S}=10 \mathrm{k} \Omega$, the total voltage noise density is roughly $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$.
For $R_{S}<3.9 k \Omega, e_{n}$ dominates and $\mathrm{e}_{\mathrm{n}, \text { total }} \approx \mathrm{e}_{\mathrm{n}}$.
The current noise of the AD8605 is so low that its total density does not become a significant term unless $R_{S}$ is greater than $6 \mathrm{M} \Omega$.
The total equivalent rms noise over a specific bandwidth is expressed as:

$$
E_{n}=\left(e_{n, T O T A L}\right) \sqrt{B W}
$$

where $B W$ is the bandwidth in Hertz.
NOTE: The above analysis is valid for frequencies larger than 100 Hz and assumes relatively flat noise, above 10 kHz . For lower frequencies, flicker noise ( $1 / \mathrm{f}$ ) must be considered.

## Channel Separation

Channel separation, or inversely crosstalk, is a measure of the signal feed from one amplifier (channel) to the other on the same IC.
The AD8606 has a channel separation of greater than -160 dB up to frequencies of 1 MHz , allowing the two amplifiers to amplify ac signals independently in most applications.


Figure 4. Channel Separation vs. Frequency

## Capacitive Load Drive

The AD8605 is capable of driving large capacitive loads without oscillation.
Figure 5 shows the output of the AD8606 in response to a 200 mV input signal.
In this case, the amplifier was configured in positive unity gain, worst case for stability, while driving a $1,000 \mathrm{pF}$ load at its output.
Driving larger capacitive loads in unity gain may require the use of additional circuitry.

A snubber network, shown in Figure 7, helps reduce the signal overshoot to a minimum and maintain stability. Although this circuit does not recover the loss of bandwidth induced by large capacitive loads, it greatly reduces the overshoot and ringing.
This method does not reduce the maximum output swing of the amplifier.
Figure 6 shows a scope photograph of the output at the snubber circuit.

The overshoot is reduced from over $70 \%$ to less than $5 \%$, and the ringing is eliminated by the snubber.
Optimum values for $\mathrm{R}_{\mathrm{S}}$ and $\mathrm{C}_{S}$ are determined experimentally. Table I summarizes a few starting values.
An alternate technique is to insert a series resistor inside the feedback loop at the output of the amplifier. Typically, the value of this resistor is approximately $100 \Omega$. This method also reduces overshoot and ringing but causes a reduction in the maximum output swing.


Figure 5. Capacitive Load Drive without Snubber


TIME - 10 $\mu \mathrm{s} / \mathrm{DIV}$
Figure 6. Capacitive Load Drive with Snubber


Figure 7. Snubber Network Configuration
Table I. Optimum Values for Capacitive Loads

| $\mathbf{C}_{\mathbf{L}}(\mathbf{p F})$ | $\mathbf{R}_{\mathbf{S}}(\boldsymbol{\Omega})$ | $\mathbf{C}_{\mathbf{S}}(\mathbf{p F})$ |
| :--- | :--- | :--- |
| 500 | 100 | 1,000 |
| 1,000 | 70 | 1,000 |
| 2,000 | 60 | 800 |

## I-V CONVERSION APPLICATIONS

## Photodiode Preamplifier Application

The low offset voltage and input current of the AD8605 make it an excellent choice for photodiode applications. In addition, the low voltage and current noise make the amplifier ideal for application circuits with high sensitivity.


Figure 8. Equivalent Circuit for Photodiode Preamp
The input bias current of the amplifier contributes an error term that is proportional to the value of $\mathrm{R}_{\mathrm{F}}$.

The offset voltage causes a dark current induced by the shunt resistance of the diode, $R_{D}$. These error terms are combined at the output of the amplifier and the error voltage is written:

$$
E_{O}=V_{O S}\left(\frac{1+R_{F}}{R_{D}}\right)+R_{F} I_{B}
$$

Typically, $R_{F}$ is much smaller than $R_{D}$ and $R_{D}$ can be ignored.
At room temperature, the AD8605 has an input bias current of 0.2 pA and an offset voltage of $100 \mu \mathrm{~V}$. Typical values of $R_{D}$ are in the range of $10 \mathrm{G} \Omega$.

For the circuit shown in Figure 8, the output error voltage is approximately $100 \mu \mathrm{~V}$ at room temperature, increasing to about 1 mV at $85^{\circ} \mathrm{C}$.

The maximum achievable signal bandwidth is:

$$
f_{M A X}=\sqrt{\frac{f t}{2 \pi R_{F} C_{T}}}
$$

Where $f_{t}$ is the unity gain frequency of the amplifier.

## Audio and PDA Applications

The AD8605's low distortion and wide dynamic range make it a great choice for audio and PDA applications, including microphone amplification and line output buffering.
Figure 9 shows a typical application circuit for headphone/line out amplification.

R1 and R2 are used to bias the input voltage at half the supply. This maximizes the signal bandwidth range. C 1 and C 2 are used to ac-couple the input signal. C 1 and R 2 form a high-pass filter whose corner frequency is $1 / 2 \pi \mathrm{R} 1 \mathrm{C} 1$.
The high output current of the AD8605 allows it to drive heavy resistive loads.
The circuit of Figure 9 was tested to drive a $16 \Omega$ headphone. The $\mathrm{THD}+\mathrm{N}$ is maintained at approximately -60 dB throughout the audio range.


Figure 9. Single-Supply Headphone/Speaker Amplifier

## AD8605/AD8606/AD8608

## Instrumentation Amplifiers

The low offset voltage and low noise of the AD8605 make it a great amplifier for instrumentation applications.
Difference amplifiers are widely used in high accuracy circuits to improve the common-mode rejection ratio.
Figure 9 shows a simple difference amplifier. The CMRR of the circuit is plotted versus frequency. Figure 10 shows the commonmode rejection for a unity gain configuration and for a gain of 10 .
Making $(\mathrm{R} 4 / \mathrm{R} 3)=(\mathrm{R} 2 / \mathrm{R} 1)$ and choosing $0.01 \%$ tolerance yields a CMRR of 74 dB and minimizes the gain error at the output.


Figure 10. Difference Amplifier CMRR vs. Frequency

## D/A Conversion

The low input bias current and offset voltage of the AD8605 make it an excellent choice for buffering the output of a current output DAC.
Figure 11 shows a typical implementation of the AD8605 at the output of a 12-bit DAC.


Figure 11. Simplified Circuit of the DAC 8143 with AD8605 Output Buffer

The DAC8143 output current is converted to a voltage by the feedback resistor. The equivalent resistance at the output of the DAC varies with the input code, as does the output capacitance.
To optimize the performance of the DAC, insert a capacitor in the feedback loop of the AD8605 to compensate the amplifier from the pole introduced by the output capacitance of the DAC. Typical values for $\mathrm{C}_{\mathrm{F}}$ are in the range of 10 pF to 30 pF ; it can be adjusted for the best frequency response. The total error at the output of the op amp can be computed by the formula:

$$
E_{O}=V_{O S}\left(\frac{1+R_{F}}{\operatorname{Req}}\right)
$$

where Req is the equivalent resistance seen at the output of the DAC. As mentioned above, Req is code dependant and varies with the input. A typical value for $R e q$ is $15 \mathrm{k} \Omega$. Choosing a feedback resistor of $10 \mathrm{k} \Omega$ yields an error of less than $200 \mu \mathrm{~V}$.
Figure 12 shows the implementation of a dual-stage buffer at the output of a DAC.
The first stage is used as a buffer. Capacitor C1, with Req, creates a low-pass filter and thus provides phase lead to compensate for frequency response. The second stage of the AD8606 is used to provide voltage gain at the output of the buffer.
Grounding the positive input terminals in both stages reduces errors due to the common-mode output voltage. Choosing R1, R2, and R3 to match within $0.01 \%$ yields a CMRR of 74 dB and maintains minimum gain error in the circuit.


Figure 12. Bipolar Operation

# AD8605/AD8606/AD8608 

OUTLINE DIMENSIONS

5-Lead Plastic Surface-Mount Package [SOT-23]
(RT-5)
Dimensions shown in millimeters


COMPLIANT TO JEDEC STANDARDS MO-178AA

## 8-Lead MSOP Package [MSOP] <br> (RM-8)

Dimensions shown in millimeters


COMPLIANT TO JEDEC STANDARDS MO-187AA

8-Lead Standard Small Outline Package [SOIC]
Narrow Body
(RN-8)
Dimensions shown in millimeters and (inches)


COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

14-Lead Standard Small Outline Package [SOIC] Narrow Body
(RN-14)
Dimensions shown in millimeters and (inches)


COMPLIANT TO JEDEC STANDARDS MS-012AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
(RU-14)
Dimensions shown in millimeters


COMPLIANT TO JEDEC STANDARDS MO-153AB-1

## AD8605/AD8606/AD8608

## Revision History

Location Page
11/02-Data Sheet changed from REV. 0 to REV. A.
Change to ELECTRICAL CHARACTERISTICS ..... 2
Update Absolute Maximum Ratings ..... 4
Update Ordering Guide ..... 4
Edit to TPC 6 ..... 5
Update OUTLINE DIMENSIONS ..... 15


[^0]:    *Protected by U.S.Patent No. 5,969,657; other patents pending. DigiTrim is a registered trademark of Analog Devices, Inc.

