High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch

FEATURES

100 ps Propagation Delay through the Switch
2Ω Switches Connect Inputs to Outputs
Data Rates up to 933 Mbps
Single 3.3 V/5 V Supply Operation
Level Translation Operation
Ultralow Quiescent Supply Current (1 nA Typical)
3.5 ns Switching

Standard '3257 Type Pinout

APPLICATIONS

Bus Switching
Bus Isolation
Level Translation
Memory Switching/Interleaving

GENERAL DESCRIPTION

The ADG3257 is a CMOS bus switch comprised of four 2:1 multiplexers/demultiplexers with high impedance outputs. The device is manufactured on a CMOS process. This provides low power dissipation yet high switching speed and very low ON resistance, allowing the inputs to be connected to the outputs without adding propagation delay or generating additional ground bounce noise.

The ADG3257 operates from a single $3.3 \mathrm{~V} / 5 \mathrm{~V}$ supply. The control logic for each switch is shown in Table I. These switches are bidirectional when ON. In the OFF condition, signal levels are blocked up to the supplies.
This bus switch is suited to both switching and level translation applications. It may be used in applications requiring level translation from 3.3 V to 2.5 V when powered from 3.3 V . Additionally, with a diode connected in series with $5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$, the ADG3257 may also be used in applications requiring 5 V to 3.3 V level translation.

Table I. Truth Table

$\overline{\mathbf{B E}}$	\mathbf{S}	Function
H	X	DISABLE
L	L	$\mathrm{A}=\mathrm{B}_{1}$
L	H	$\mathrm{A}=\mathrm{B}_{2}$

REV. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. 0.1 ns propagation delay through switch
2. 2Ω switches connect inputs to outputs
3. Bidirectional operation
4. Ultralow power dissipation
5. 16-lead QSOP package

ADG3257-SPECIFICATIONS ${ }^{1}$
$\left(V_{\text {CC }}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}\right.$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.)

Parameter	Symbol	Conditions ${ }^{2}$	B Version			Unit
			Min	Typ ${ }^{3}$	Max	
DC ELECTRICAL CHARACTERISTICS Input High Voltage Input Low Voltage Input Leakage Current OFF State Leakage Current ON State Leakage Current Max Pass Voltage ${ }^{4}$	$\mathrm{V}_{\mathrm{INH}}$ $\mathrm{V}_{\mathrm{INL}}$ I_{I} I_{OZ} I_{OZ} V_{P}	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V} \\ & 0 \leq \mathrm{A}, \mathrm{~B} \leq \mathrm{V}_{\mathrm{CC}} \\ & 0 \leq \mathrm{A}, \mathrm{~B} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-5 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & -0.3 \end{aligned}$ 3.9	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.01 \\ & 4.2 \end{aligned}$	$\begin{aligned} & +0.8 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$
CAPACITANCE ${ }^{4}$ A Port OFF Capacitance B Port OFF Capacitance A, B Port ON Capacitance Control Input Capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{A}} \mathrm{OFF} \\ & \mathrm{C}_{\mathrm{B}} \mathrm{OFF} \\ & \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}} \mathrm{ON} \\ & \mathrm{C}_{\text {IN }} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 7 \\ & 5 \\ & 11 \\ & 4 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
SWITCHING CHARACTERISTICS ${ }^{4}$ Propagation Delay A to B or B to $\mathrm{At}_{\mathrm{PD}}$ Propagation Delay Matching ${ }^{6}$ Bus Enable Time $\overline{\mathrm{BE}}$ to A or B Bus Disable Time $\overline{\mathrm{BE}}$ to A or B Bus Select Time S to A or B Enable Disable Max Data Rate	$t_{\text {PHL }}, t_{\text {PLH }}{ }^{5}$ $\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$ $\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$ $\mathrm{t}_{\text {SEL_EN }}$ $\mathrm{t}_{\text {SEL_DIS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\mathrm{A}}=2 \mathrm{Vp}-\mathrm{p} \end{aligned}$		$\begin{aligned} & 0.0075 \\ & 5 \\ & 3.5 \\ & \\ & 8 \\ & 5 \\ & 933 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.035 \\ & 7.5 \\ & 7 \\ & \\ & 12 \\ & 8 \end{aligned}$	ns ns ns ns ns ns Mbps
DIGITAL SWITCH ON Resistance ON Resistance Matching	R_{ON} $\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=48 \mathrm{~mA}, 15 \mathrm{~mA}, 8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=48 \mathrm{~mA}, 15 \mathrm{~mA}, 8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{A}}=2.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=48 \mathrm{~mA}, 15 \mathrm{~mA}, 8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=48 \mathrm{~mA}, 15 \mathrm{~mA}, 8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V} \\ & 48 \mathrm{~mA}, 15 \mathrm{~mA}, 8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, 48 \mathrm{~mA}, 15 \mathrm{~mA}, 8 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 3 \\ & 4 \\ & \\ & 5 \\ & 6 \\ & \\ & 0.35 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
POWER REQUIREMENTS V_{CC} Quiescent Power Supply Current Increase in I_{CC} per Input ${ }^{7}$	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & \Delta \mathrm{I}_{\mathrm{CC}} \end{aligned}$	Digital Inputs $=0 \mathrm{~V}$ or V_{CC} $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One Input at 3.0 V ; Others at V_{CC} or GND	3.0	0.001	$\begin{aligned} & 5.5 \\ & 1 \\ & 200 \end{aligned}$	V $\mu \mathrm{A}$ $\mu \mathrm{A}$

NOTES

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ See Test Circuits and Waveforms.
${ }^{3}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
${ }^{4}$ Guaranteed by design, not subject to production test.
${ }^{5}$ The digital switch contributes no propagation delay other than the RC delay of the typical R_{ON} of the switch and the load capacitance when driven by an ideal voltage source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
${ }^{6}$ Propagation delay matching between channels is calculated from ON resistance matching of worst-case channel combinations and load capacitance.
${ }^{7}$ This current applies to the control pins only and represents the current required to switch internal capacitance at the specified frequency. The A and B ports contribute no significant ac or dc currents as they transition. This parameter is guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SPECIFICATIONS ${ }^{1}$

$$
\left(V_{C C}=3.3 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \text {. All specifications } \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}\right. \text {, unless otherwise noted.) }
$$

Parameter	Symbol	Conditions ${ }^{2}$	B Version			Unit
			Min	Typ ${ }^{3}$	Max	
DC ELECTRICAL CHARACTERISTICS Input High Voltage Input Low Voltage Input Leakage Current OFF State Leakage Current ON State Leakage Current Max Pass Voltage ${ }^{4}$	$\mathrm{V}_{\mathrm{INH}}$ $\mathrm{V}_{\mathrm{INL}}$ I_{I} I_{OZ} I_{OZ} V_{P}	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IN}} \leq 3.6 \mathrm{~V} \\ & 0 \leq \mathrm{A}, \mathrm{~B} \leq \mathrm{V}_{\mathrm{CC}} \\ & 0 \leq \mathrm{A}, \mathrm{~B} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-5 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & -0.3 \end{aligned}$ 2.3	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.01 \\ & 2.6 \end{aligned}$	$\begin{aligned} & +0.8 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$
CAPACITANCE ${ }^{4}$ A Port OFF Capacitance B Port OFF Capacitance A, B Port ON Capacitance Control Input Capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{A}} \mathrm{OFF} \\ & \mathrm{C}_{\mathrm{B}} \mathrm{OFF} \\ & \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}} \mathrm{ON} \\ & \mathrm{C}_{\mathrm{IN}} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 7 \\ & 5 \\ & 11 \\ & 4 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
SWITCHING CHARACTERISTICS ${ }^{4}$ Propagation Delay A to B or B to $A t_{\text {PD }}$ Propagation Delay Matching ${ }^{6}$ Bus Enable Time $\overline{\mathrm{BE}}$ to A or B Bus Disable Time $\overline{\mathrm{BE}}$ to A or B Bus Select Time S to A or B Enable Disable Max Data Rate	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}{ }^{5}$ $\mathrm{t}_{\text {PZH, }}, \mathrm{t}_{\text {PZL }}$ $\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$ $\mathrm{t}_{\text {SEL_EN }}$ tsel_Dis	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\mathrm{A}}=2 \mathrm{Vp} \mathrm{p} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 5.5 \\ & 4.5 \\ & \\ & 8 \\ & 6 \\ & 933 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.04 \\ & 9 \\ & 8.5 \\ & \\ & 12 \\ & 9 \end{aligned}$	ns ns ns ns ns ns Mbps
DIGITAL SWITCH ON Resistance ON Resistance Matching	R_{ON} $\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}, 8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{A}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{A}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, 15 \mathrm{~mA}, 8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, 15 \mathrm{~mA}, 8 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 4 \\ & 4.5 \\ & 16.5 \\ & 18 \\ & 14 \\ & 17 \\ & 0.4 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \hline \end{aligned}$
POWER REQUIREMENTS V_{CC} Quiescent Power Supply Current Increase in I_{CC} per Input ${ }^{7}$	I_{CC} $\Delta \mathrm{I}_{\mathrm{CC}}$	Digital Inputs $=0 \mathrm{~V}$ or V_{CC} $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, One Input at 3.0 V ; Others at V_{CC} or GND	3.0	0.001	$\begin{aligned} & 5.5 \\ & 1 \\ & 200 \end{aligned}$	V $\mu \mathrm{A}$ $\mu \mathrm{A}$

NOTES

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ See Test Circuits and Waveforms.
${ }^{3}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
${ }^{4}$ Guaranteed by design, not subject to production test.
${ }^{5}$ The digital switch contributes no propagation delay other than the RC delay of the typical R_{ON} of the switch and the load capacitance when driven by an ideal voltage source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
${ }^{6}$ Propagation delay matching between channels is calculated from ON resistance matching of worst-case channel combinations and load capacitance.
${ }^{7}$ This current applies to the control pins only and represents the current required to switch internal capacitance at the specified frequency. The A and B ports contribute no significant ac or dc currents as they transition. This parameter is guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG3257

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Digital Inputs to GND . -0.3 V to +6 V
DC Input Voltage . -0.3 V to +6 V
DC Output Current . 100 mA
Operating Temperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $150^{\circ} \mathrm{C}$
QSOP Package
$\theta_{\text {JA }}$ Thermal Impedance $149.97^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec) $300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature ($<20 \mathrm{sec}$) $235^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS

Mnemonic	Description
$\overline{\overline{\mathrm{BE}}}$	Output Enable (Active Low)
S	Port Select
Ax	Port A, Inputs or Outputs
Bx	Port B, Inputs or Outputs

ORDERING GUIDE

Model	Temperature Range	Package Descriptions	Package Option
ADG 3257 BRQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{RQ}=0.15^{\prime \prime}$ Quarter Size Outline Package (QSOP)	RQ-16

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG3257 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics-ADG3257

TPC 1. ON Resistance vs. Input Voltage

TPC 4. ON Resistance vs. Input Voltage for Different Temperatures

TPC 7. Max Pass Voltage

TPC 2. ON Resistance vs. Input Voltage

TPC 5. I $C C$ vs. Enable Frequency

TPC 8. 622 Mbps Eye Diagram

TPC 3. ON Resistance vs. Input Voltage for Different Temperatures

TPC 6. Max Pass Voltage

TPC 9. 933 Mbps Eye Diagram

NOTES
${ }^{1}$ PULSE GENERATOR FOR ALL PULSES: $\mathrm{t}_{\mathrm{F}}<2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{R}}<2.5 \mathrm{~ns}$.
${ }^{2} \mathrm{C}_{\mathrm{L}}$ = INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.
${ }^{3} \mathrm{R}_{\mathrm{T}}$ IS THE TERMINATION RESISTOR; SHOULD BE EQUAL TO $Z_{\text {OUT }}$ OF THE PULSE GENERATOR.

Figure 1. Load Circuit

Figure 2. Propagation Delay

Figure 3. Select, Enable, and Disable Times
Table II. Switch S1 Condition

Test	$\mathbf{S} 1$
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	OPEN
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	$2 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND
$\mathrm{t}_{\text {SEL }}$	OPEN

Table III. Test Conditions

Symbol	$\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 3} \mathbf{V} \pm \mathbf{1 0 \%}$	Unit
R_{L}	500	500	Ω
$\mathrm{~V}_{\Delta}$	300	300	mV
C_{L}	50	50	pF

APPLICATIONS

Mixed Voltage Operation, Level Translation

Bus switches can be used to provide a solution for mixed voltage systems where interfacing bidirectionally between 5 V and 3 V devices is required. To interface between 5 V and 3.3 V buses, an external diode is placed in series with the 5 V power supply as shown in Figure 4.

Figure 4. Level Translation Between 5 V and 3.3 V Devices
The diode drops the internal gate voltage down to 4.3 V . The bus switch limits the voltage present on the output to $\mathrm{V}_{\mathrm{CC}}-$ external diode drop $=\mathrm{V}_{\mathrm{TH}}$.
Therefore, assuming a diode drop of 0.7 V and a V_{TH} of 1 V , the output voltage would be limited to 3.3 V with a logic high.

Figure 5. Input Voltage to Output Voltage
Similarly, the device could be used to translate bidirectionally between 3.3 V to 2.5 V systems. In this case, there is no need for an external diode. The internal V_{TH} drop is 1 V , so with a $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ the bus switch will limit the output voltage to $\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}=2.3 \mathrm{~V}$.

Figure 6. 3.3 V to 2.5 V Level Translation Using the ADG3257 Bus Switch

Memory Switching

This quad bus switch may be used to allow switching between different memory banks, thus allowing additional memory and decreasing capacitive loading. Figure 7 illustrates the ADG3257 in such an application.

Figure 7. Allows Additional Memory Modules without Added Drive or Delay

OUTLINE DIMENSIONS

16－Lead Shrink Small Outline Package［QSOP］ （RQ－16）
 Dimensions shown in inches

Revision History

Location Page4／03－Data Sheet changed from REV．B to REV．C．Updated Publication Code． 8
4／03－Data Sheet changed from REV．A to REV．B．Updated OUTLINE DIMENSIONS8
06／02－Data Sheet changed from REV． 0 to REV．A．
Edits to FEATURES 1

