FEATURES

Single- or Dual-Supply Operation
Low Noise: $4.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 1 kHz
Wide Bandwidth: 3.4 MHz
Low Offset Voltage: $100 \mu \mathrm{~V}$
Very Low Drift: $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Unity Gain Stable
No Phase Reversal
APPLICATIONS
Digital Scales
Multimedia
Strain Gages
Battery-Powered Instrumentation
Temperature Transducer Amplifier

GENERAL DESCRIPTION

The OP113 family of single supply operational amplifiers features both low noise and drift. It has been designed for systems with internal calibration. Often these processor-based systems are capable of calibrating corrections for offset and gain, but they cannot correct for temperature drifts and noise. Optimized for these parameters, the OP113 family can be used to take advantage of superior analog performance combined with digital correction. M any systems using internal calibration operate from unipolar supplies, usually either 5 V or 12 V . T he OP113 family is designed to operate from single supplies from 4 V to 36 V , and to maintain its low noise and precision performance.
The OP113 family is unity gain stable and has a typical gain bandwidth product of 3.4 M Hz . Slew rate is in excess of $1 \mathrm{~V} / \mu \mathrm{s}$. N oise density is a very low $4.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, and noise in the 0.1 Hz to 10 Hz band is 120 nV p -p. Input offset voltage is guaranteed and offset drift is guaranteed to be less than $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Input common-mode range includes the negative supply and to within 1 V of the positive supply over the full supply range. Phase reversal protection is designed into the OP113 family for cases where input voltage range is exceeded. Output voltage swings also include the negative supply and go to within 1 V of the positive rail. T he output is capable of sinking and sourcing current throughout its range and is specified with 600Ω loads.
Digital scales and other strain gage applications benefit from the very low noise and low drift of the OP113 family. Other applications include use as a buffer or amplifier for both A/D and D/A sigma-delta converters. Often these converters have high resolutions requiring the lowest noise amplifier to utilize their full potential. M any of these converters operate in either single supply or low supply voltage systems, and attaining the greater signal swing possible increases system performance.

REV. E

[^0]
PIN CONNECTIONS

The OP113 family is specified for single 5 V and dual $\pm 15 \mathrm{~V}$ operation over the XIND-extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range. They are available in plastic and SOIC surface mount packages.

OP113/OP213/OP413- SPECIFICATIONS

[^1]
ELECTRICAL CHARACTERISTICS (e $V_{s}=5.0 V_{,} T_{A}=25^{\circ} \mathrm{C}$ uness otherwise noted.)

[^2]
OP113/OP213/OP413

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{2}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Unit
8-Lead Plastic DIP (P)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOIC (S)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead Plastic DIP (P)	83	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead SOIC (S)	92	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES
${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2} \theta_{\mathrm{JA}}$ is specified for the worst-case conditions, i.e., θ_{JA} is specified for device in socket for cerdip, P-DIP, and LCC packages; $\theta_{J A}$ is specified for device soldered in circuit board for SOIC package.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
OP113ES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	$\mathrm{SO}-8$
OP113F P*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead Plastic DIP	$\mathrm{N}-8$
OP113F S	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	$\mathrm{SO}-8$
OP213EP*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead Plastic DIP	$\mathrm{N}-8$
OP213ES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	$\mathrm{SO}-8$
OP213F P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead Plastic DIP	$\mathrm{N}-8$
OP213F S	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	$\mathrm{SO}-8$
OP413ES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-L ead W ide SOIC	$\mathrm{R}-16$
OP413FP*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Lead Plastic DIP	$\mathrm{N}-14$
OP413FS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-L ead W ide SOIC	R-16

*N ot for new designs; obsolete April 2002.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP 113/OP 213/OP413 features proprietary ESD protection circuitry, permanent damage may occur on devicessubjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TPC 1a. OP113 Input Offset ($V_{\text {OS }}$) Distribution @ ± 15 V

TPC 1b. OP213 Input Offset ($V_{\text {OS }}$) Distribution @ ± 15 V

TPC 1c. OP413 Input Offset ($V_{\text {os }}$) Distribution $@ \pm 15$ V

TPC 2a. OP113 Temperature Drift (TCV ${ }_{\text {OS }}$) Distribution @ ± 15 V

TPC 2b. OP213 Temperature Drift (TCV ${ }_{\text {OS }}$) Distribution @ ± 15 V

TPC 2c. OP413 Temperature Drift (TCV ${ }_{\text {OS }}$) Distribution @ ± 15 V

OP113/OP213/OP413

TPC 3. OP113 Input Bias Current vs. Temperature

TPC 4. Output Swing vs. Temperature and $R_{L} @ 5 V$

TPC 5. Channel Separation

TPC 6. OP213 Input Bias Current vs. Temperature

TPC 7. Output Swing vs. Temperature and $R_{L} @ \pm 15 \mathrm{~V}$

TPC 8. Open-Loop Gain vs. Temperature @ 5 V

TPC 9. OP413 Open-Loop Gain vs. Temperature

TPC 10. Open-Loop Gain, Phase vs. Frequency @ 5 V

TPC 11. Closed-Loop Gain vs. Frequency @ 5 V

TPC 12. OP213 Open-Loop Gain vs. Temperature

TPC 13. Open-Loop Gain, Phase vs. Frequency @ $\pm 15 \mathrm{~V}$

TPC 14. Closed-Loop Gain vs. Frequency @ $\pm 15 \mathrm{~V}$

TPC 15. Gain Bandwidth Product and Phase Margin vs. Temperature @ 5 V

TPC 16. Voltage Noise Density vs. Frequency

TPC 17. Common-Mode Rejection vs. Frequency @ 5 V

TPC 18. Gain Bandwidth Product and Phase Margin vs. Temperature @ $\pm 15 \mathrm{~V}$

TPC 19. Current Noise Density vs. Frequency

TPC 20. Common-Mode Rejection vs. Frequency @ ± 15 V

TPC 21. Power Supply Rejection vs. Frequency @ ± 15 V

TPC 22. Maximum Output Swing vs. Frequency @ 5 V

TPC 23. Small Signal Overshoot vs. Load Capacitance @ 5 V

TPC 24. Closed-Loop Output Impedance vs. Frequency $@ \pm 15$ V

TPC 25. Maximum Output Swing vs. Frequency @ ± 15 V

TPC 26. Small Signal Overshoot vs. Load Capacitance @ ± 15 V

TPC 27. Slew Rate vs. Temperature @ 5 V (0.5 V $\leq V_{\text {OUT }} \leq 4.0 \mathrm{~V}$)

TPC 28. Input Voltage Noise @ ± 15 V (20nV/div)

TPC 29. Noise Test Diagram

TPC 30. Slew Rate vs. Temperature @ $\pm 15 \mathrm{~V}$ (-10 V $\leq V_{\text {OUT }} \leq+10.0 \mathrm{~V}$)

TPC 31. Input Voltage Noise @ 5 V (20nV/div)

TPC 32. Supply Current vs. Temperature

APPLICATIONS

The OP113, OP213, and OP413 form a new family of high performance amplifiers that feature precision performance in standard dual supply configurations and, more importantly, maintain precision performance when a single power supply is used. In addition to accurate dc specifications, it is the lowest noise single supply amplifier available with only $4.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ typical noise density.
Single supply applications have special requirements due to the generally reduced dynamic range of the output signal. Single supply applications are often operated at voltages of 5 V or 12 V , compared to dual supply applications with supplies of $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V} . \mathrm{T}$ his results in reduced output swings. Where a dual supply application may often have 20 V of signal output swing, single supply applications are limited to, at most, the supply range and, more commonly, several volts below the supply. In order to attain the greatest swing, the single supply output stage must swing closer to the supply rails than in dual supply applications.
The OP113 family has a new patented output stage that allows the output to swing closer to ground, or the negative supply, than previous bipolar output stages. Previous op amps had outputs that could swing to within about ten millivolts of the negative supply in single supply applications. H owever, the OP113 family combines both a bipolar and a CM OS device in the output stage, enabling it to swing to within a few hundred microvolts of ground.
When operating with reduced supply voltages, the input range is also reduced. This reduction in signal range results in reduced signal-to-noise ratio, for any given amplifier. T here are only two ways to improve this: increase the signal range or reduce the noise. T he OP113 family addresses both of these parameters. Input signal range is from the negative supply to within one volt of the positive supply over the full supply range. Competitive parts have input ranges that are a half a volt to five volts less than this. N oise has also been optimized in the OP113 family. At $4.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, it is less than one fourth that of competitive devices.

Phase Reversal

The OP113 family is protected against phase reversal as long as both of the inputs are within the supply ranges. H owever, if there is a possibility of either input going below the negative supply (or ground in the single supply case), the inputs should be protected with a series resistor to limit input current to 2 mA .

OP113 Offset Adjust

The OP113 has the facility for external offset adjustment, using the industry standard arrangement. Pins 1 and 5 are used in conjunction with a potentiometer of $10 \mathrm{k} \Omega$ total resistance, connected with the wiper to V - (or ground in single supply applications). The total adjustment range is about $\pm 2 \mathrm{mV}$ using this configuration.
Adjusting the offset to zero has minimal effect on offset drift (assuming the potentiometer has a tempco of less than 1000 ppm/ ${ }^{\circ} \mathrm{C}$). Adjustment away from zero, however, (like all bipolar amplifiers) will result in a TCV ${ }_{\text {os }}$ of approximately $3.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for every millivolt of induced offset.
It is therefore not generally recommended that this trim be used to compensate for system errors originating outside of the OP113. The initial offset of the OP113 is low enough that external trimming is almost never required but, if necessary, the 2 mV trim
range may be somewhat excessive. Reducing the trimming potentiometer to a $2 \mathrm{k} \Omega$ value will give a more reasonable range of $\pm 400 \mu \mathrm{~V}$.

Figure 1. Precision Load Cell Scale Amplifier

APPLICATION CIRCUITS

A High Precision Industrial Load-Cell Scale Amplifier

The OP113 family makes an excellent amplifier for conditioning a load-cell bridge. Its low noise greatly improves the signal resolution, allowing the load cell to operate with a smaller output range, thus reducing its nonlinearity. Figure 1 shows one half of the O P113 family used to generate a very stable 10.000 V bridge excitation voltage while the second amplifier provides a differential gain. R4 should be trimmed for maximum common-mode rejection.

A Low Voltage Single Supply, Strain-Gage Amplifier

The true zero swing capability of the OP113 family allows the amplifier in Figure 2 to amplify the strain-gage bridge accurately even with no signal input while being powered by a single 5 V supply. A stable 4.000 V bridge voltage is made possible by the rail-to-rail OP295 amplifier, whose output can swing to within a millivolt of either rail. This high voltage swing greatly increases the bridge output signal without a corresponding increase in bridge input.

Figure 2. Single Supply Strain-Gage Amplifier

OP113/OP213/OP413

A High Accuracy Linearized RTD Thermometer Amplifier

 Zero suppressing the bridge facilitates simple linearization of the RTD by feeding back a small amount of the output signal to the RTD (Resistor Temperature D evice). In Figure 3, the left leg of the bridge is servoed to a virtual ground voltage by amplifier A1, while the right leg of the bridge is also servoed to zero volt by amplifier A2. This eliminates any error resulting from commonmode voltage change in the amplifier. A 3 -wire RTD is used to balance the wire resistance on both legs of the bridge, thereby reducing temperature mismatch errors. The 5.000 V bridge excitation is derived from the extremely stable AD 588 reference device with $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift performance.Linearization of the RTD is done by feeding a fraction of the output voltage back to the RTD in the form of a current. W ith just the right amount of positive feedback, the amplifier output will be linearly proportional to the temperature of the RT D.

Figure 3. Ultraprecision RTD Amplifier
To calibrate the circuit, first immerse the RTD in a zero-degree ice bath or substitute an exact 100Ω resistor in place of the RTD. Adjust the ZERO ADJU ST potentiometer for a 0.000 V output, then set R9 LINEARITY ADJUST potentiometer to the middle of its adjustment range. Substitute a 280.9Ω resistor (equivalent to $500^{\circ} \mathrm{C}$) in place of the RTD, and adjust the FULL-SCALE ADJUST potentiometer for a full-scale voltage of 5.000 V .
T o calibrate out the nonlinearity, substitute a 194.07Ω resistor (equivalent to $250^{\circ} \mathrm{C}$) in place of the RTD, then adjust the LINEARITY ADJUST potentiometer for a 2.500 V output. Check and readjust the full-scale and half-scale as needed.

O nce calibrated, the amplifier outputs a $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ temperature coefficient with an accuracy better than $\pm 0.5^{\circ} \mathrm{C}$ over an RTD measurement range of $-150^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$. Indeed the amplifier can be calibrated to a higher temperature range, up to $850^{\circ} \mathrm{C}$.

A High Accuracy Thermocouple Amplifier

Figure 4 shows a popular K-type thermocouple amplifier with cold-junction compensation. Operating from a single 12 V supply, the OP113 family's low noise allows temperature measurement to better than $0.02^{\circ} \mathrm{C}$ resolution from $0^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ range. The cold-junction error is corrected by using an inexpensive silicon diode as a temperature measuring device. It should be placed as close to the two terminating junctions as physically possible. An aluminum block might serve well as an isothermal system.

Figure 4. Accurate K-Type Thermocouple Amplifier
R 6 should be adjusted for a zero-volt output with the thermocouple measuring tip immersed in a zero-degree ice bath. When calibrating, be sure to adjust R6 initially to cause the output to swing in the positive direction first. Then back off in the negative direction until the output just stops changing.
An Ultralow Noise, Single Supply Instrumentation Amplifier Extremely low noise instrumentation amplifiers can be built using the OP113 family. Such an amplifier that operates off a single supply is shown in Figure 5. Resistors R1-R5 should be of high precision and low drift type to maximize CM RR performance. Although the two inputs are capable of operating to zero volt, the gain of -100 configuration will limit the amplifier input common mode to not less than 0.33 V .

Figure 5. Ultralow Noise, Single Supply Instrumentation Amplifier

Supply Splitter Circuit

The OP113 family has excellent frequency response characteristic that makes it an ideal pseudo-ground reference generator as shown in Figure 6. The OP113 family serves as a voltage follower buffer. In addition, it drives a large capacitor that serves as a charge reservoir to minimize transient load changes, as well as a low impedance output device at high frequencies. T he circuit easily supplies 25 mA load current with good settling characteristics.

Figure 6. False Ground Generator

Low Noise Voltage Reference

Few reference devices combine low noise and high output drive capabilities. Figure 7 shows the OP113 family used as a two-pole active filter that band limits the noise of the 2.500 V reference. Total noise measures $3 \mu \mathrm{~V}$ p-p.

Figure 7. Low Noise Voltage Reference

5V Only Stereo DAC for Multimedia

The OP113 family's low noise and single supply capability are ideally suited for stereo DAC audio reproduction or sound synthesis applications such as multimedia systems. Figure 8 shows an 18-bit stereo DAC output setup that is powered from a single 5 V supply. The low noise preserves the 18-bit dynamic range of the AD 1868. F or DACs that operate on dual supplies, the OP113 family can also be powered from the same supplies.

Figure 8. 5 V Only 18-Bit Stereo DAC

OP113/OP213/OP413

Low Voltage Headphone Amplifiers

Figure 9 shows a stereo headphone output amplifier for the AD 1849 16-bit SoundPort ${ }^{\circledR}$ Stereo C odec device. The pseudoreference voltage is derived from the common-mode voltage generated internally by the AD 1849, thus providing a convenient bias for the headphone output amplifiers.

Figure 9. Headphone Output Amplifier for Multimedia Sound Codec

Low Noise Microphone Amplifier for Multimedia

The OP 113 family is ideally suited as a low noise microphone preamp for low voltage audio applications. Figure 10 shows a gain of 100 stereo preamp for the AD 1849 16-bit SoundP ort Stereo Codec chip. The common-mode output buffer serves as a "phantom power" driver for the microphones.

Figure 10. Low Noise Stereo Microphone Amplifier for Multimedia Sound Codec

Precision Voltage Comparator

With its PN P inputs and zero volt common-mode capability, the OP113 family can make useful voltage comparators. There is only a slight penalty in speed in comparison to IC comparators. H owever, the significant advantage is its voltage accuracy. For example, $\mathrm{V}_{0 S}$ can be a few hundred microvolts or less, combined with CM RR and PSRR exceeding 100 dB , while operating on 5 V supply. Standard comparators like the 111/311 family operate on 5 V , but not with common-mode at ground, nor with offset below 3 mV . Indeed, no commercially available single supply comparator has a $\mathrm{V}_{\text {OS }}$ less than $200 \mu \mathrm{~V}$.
Figure 11 shows the OP 113 family response to a 10 mV overdrive signal when operating in open loop. The top trace shows the output rising edge has a 15μ s propagation delay, while the bottom trace shows a 7 s delay on the output falling edge. T his ac response is quite acceptable in many applications.

Figure 11. Precision Comparator
The low noise and $250 \mu \mathrm{~V}$ (maximum) offset voltage enhance the overall dc accuracy of this type of comparator. N ote that zero crossing detectors and similar ground referred comparisons can be implemented even if the input swings to -0.3 V below ground.

Figure 12. OP213 Simplified Schematic

* SECOND CURRENT NOISE SOURCE

DN5	27	28	DIN
DN6	28	29	DIN
VN5	27	0	DC 2
VN6	0	29	DC 2

*
* GAIN STAGE \& DOM INANT POLE AT . $2000 \mathrm{E}+01 \mathrm{HZ}$

G2 $\quad 34 \begin{array}{lllll}36 & 19 & 20 & 2.65 \mathrm{E}-04\end{array}$

R7	34	36	$39 E+06$	
V3	35	4	DC	6

D4	36	35	DX
VB2	34	4	1.6

* SUPPLY/2 GENERATOR

ISY	7	4	$0.2 \mathrm{E}-3$
R10	7	60	$40 \mathrm{E}+3$
R11	60	4	$40 \mathrm{E}+3$
C3	60	0	$1 \mathrm{E}-9$

* CMRR STAGE \& POLE AT 6 kHZ
$\begin{array}{llllllllll}\text { ECM } & 50 & 4 & \operatorname{POLY}(2) & 3 \mathrm{BEF} 60 & 2 & 60 & 0 & 1.6 & 0 \\ 1.6\end{array}$
CCM 5051 26.5E-12
RCM150 51 1E6
RCM 25141
*

OUTPUT STAGE

R12	37	36	$1 E 3$

R13 $38 \quad 36 \quad 500$
$\begin{array}{llll}\text { C } 4 & 37 & 6 & 20 \mathrm{E}-12\end{array}$
C5 $38 \quad 39 \quad 20 \mathrm{E}-12$
M $13936 \quad 44 \mathrm{MNL}=9 \mathrm{E}-6 \mathrm{~W}=1000 \mathrm{E}-6 \mathrm{AD}=15 \mathrm{E}-9 \mathrm{AS}=15 \mathrm{E}-9$
M2 $4536 \quad 44 M N L=9 E-6 W=1000 E-6 A D=15 E-9 A S=15 E-9$
$\begin{array}{llll}\text { D5 } & 39 & 47 & \text { DX }\end{array}$
Q3 $39 \quad 40 \quad 41 \quad$ QPA 8
$\begin{array}{lllll}\text { VB } & 7 & 40 & \text { DC } & 0.861\end{array}$
$\begin{array}{lllll}\text { R14 } & 7 & 41 & 375 \\ \text { Q4 } & 41 & 7 & 43 & \text { QNA } 1\end{array}$
$\begin{array}{lllll}\text { R17 } & 7 & 43 & 15 & \\ \text { Q5 } & 43 & 39 & 6 & \text { QNA } 20\end{array}$
Q6 $46 \quad 45 \quad 6 \quad$ QPA 20
$\begin{array}{llll}\text { R18 } & 46 & 4 & 15\end{array}$
Q7 $\quad 36 \quad 46 \quad 4 \quad$ QNA 1
M $363644 \mathrm{MNL}=9 \mathrm{E}-6 \mathrm{~W}=2000 \mathrm{E}-6 \mathrm{AD}=30 \mathrm{E}-9 \mathrm{AS}=30 \mathrm{E}-9$

* NONLINEAR MODELSUSED
*

.M ODEL DX D (IS=1E-15)
.MODEL DY D (IS=1E-15 BV=7)
.M ODEL PNP1 PNP (BF=220)
.M ODEL DEN D (IS=1E-12 RS=1016 KF=3.278E-15 AF=1)
.M ODEL DIN D (IS =1E-12 RS=100019 KF=4.173E-15 AF=1)
.M ODEL QNA NPN (IS=1.19E-16 BF =253 VAF =193 VAR $=15 \mathrm{RB}=2.0 \mathrm{E} 3$
$+\mathrm{IRB}=7.73 \mathrm{E}-6 \mathrm{RBM}=132.8 \mathrm{RE}=4 \mathrm{RC}=209 \mathrm{CJE}=2.1 \mathrm{E}-13 \mathrm{VJE}=0.573$
$+\mathrm{MJE}=0.364 \mathrm{CJC}=1.64 \mathrm{E}-13 \mathrm{VJC}=0.534 \mathrm{MJC}=0.5 \mathrm{CJS}=1.37 \mathrm{E}-12$
$+\mathrm{VJS}=0.59 \mathrm{MJS}=0.5 \mathrm{TF}=0.43 \mathrm{E}-9 \mathrm{PTF}=30$)
. M ODEL QPA PNP (IS=5.21E-17 BF=131 VAF $=62 \mathrm{VAR}=15 \mathrm{RB}=1.52 \mathrm{E} 3$
$+I R B=1.67 E-5 \quad R B M=368.5 R E=6.31 R C=354.4 \mathrm{CJE}=1.1 \mathrm{E}-13$
$+\mathrm{VJE}=0.745 \mathrm{MJE}=0.33 \mathrm{CJC}=2.37 \mathrm{E}-13 \mathrm{VJC}=0.762 \mathrm{MJC}=0.4$
$+\mathrm{CJS}=7.11 \mathrm{E}-13 \mathrm{VJS}=0.45 \mathrm{M} \mathrm{JS}=0.412 \mathrm{TF}=1.0 \mathrm{E}-9 \mathrm{PTF}=30$)
.M ODEL M N NM OS(LEVEL =3 VTO =1.3 RS=0.3 RD $=0.3$ TOX $=8.5 E-8$
$+\mathrm{LD}=1.48 \mathrm{E}-6 \mathrm{WD}=1 \mathrm{E}-6 \mathrm{NSU}$ B $=1.53 \mathrm{E} 16 \mathrm{U} 0=650 \mathrm{DELTA}=10 \mathrm{VMAX}=2 \mathrm{E} 5$
$+\mathrm{XJ}=1.75 \mathrm{E}-6 \mathrm{~K} \mathrm{APPA}=0.8 \mathrm{ETA}=0.066 \mathrm{THETA}=0.01 \mathrm{TPG}=1 \mathrm{CJ}=2.9 \mathrm{E}-4$
$+P B=0.837 \mathrm{MJ}=0.407 \mathrm{CJSW}=0.5 \mathrm{E}-9 \mathrm{MJSW}=0.33$)
*
.ENDS OP113 Family

OUTLINE DIMENSIONS

 (IN PARENTHESES)

COMPLIANT TO JEDEC STANDARDS MO-095-AB
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

16-Lead Standard Small Outline Package [SOIC] Wide Body
 (R-16)

Dimensions shown in millimeters and (inches)

Revision History

8-Lead Standard Small Outline Package [SOIC] Narrow Body
 (R-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Location Page
8/02-Data Sheet changed from REV. D to REV. E.
Edits to Figure 6 13
Edits to Figure 7 13
Edits to OUTLINE DIMENSIONS 16
9/01—Data Sheet changed from REV. C to REV. D.4

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1}$ Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at $125^{\circ} \mathrm{C}$, with an LTPD of 1.3 .
 ${ }^{2} \mathrm{G}$ uaranteed specifications, based on characterization data.
 Specifications subject to change without notice.

[^2]: NOTES
 ${ }^{1}$ Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at $125^{\circ} \mathrm{C}$, with an LTPD of 1.3 .
 ${ }^{2}$ G uaranteed specifications, based on characterization data.
 Specifications subject to change without notice.

