Dual Low Bias Current Precision Operational Amplifier OP297

FEATURES

Precision Performance in Standard SO-8 Pinout
Low Offset Voltage: $50 \mu \mathrm{~V}$ max
Low Offset Voltage Drift: $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
Very Low Bias Current:
$+25^{\circ} \mathrm{C}(100 \mathrm{pA}$ max)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (450 pA max)
Very High Open-Loop Gain ($2000 \mathrm{~V} / \mathrm{mV}$ min)
Low Supply Current (Per Amplifier): $625 \mu \mathrm{~A}$ max
Operates From 62 V to 620 V Supplies
High Common-Mode Rejection: 120 dB min
Pin Compatible to LT1013, AD706, AD708, OP221,
LM158, and MC1458/1558 with Improved Performance
APPLICATIONS
Strain Gauge and Bridge Amplifiers
High Stability Thermocouple Amplifiers
Instrumentation Amplifiers
Photo-Current Monitors
High-Gain Linearity Amplifiers
Long-Term Integrators/Filters
Sample-and-Hold Amplifiers
Peak Detectors
Logarithmic Amplifiers
Battery-Powered Systems

GENERAL DESCRIPTION

The OP297 is the first dual op amp to pack precision performance into the space-saving, industry standard 8 -pin SO package. Its combination of precision with low power and extremely low input bias current makes the dual OP297 useful in a wide variety of applications.
Precision performance of the OP297 includes very low offset, under $50 \mu \mathrm{~V}$, and low drift, below $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Open-loop gain exceeds $2000 \mathrm{~V} / \mathrm{mV}$ insuring high linearity in every application.

Figure 1. Low Bias Current Over Temperature
REV. D

[^0]
PIN CONNECTIONS

Plastic Epoxy-DIP (P Suffix)
8-Pin Cerdip (Z Suffix)
8-Pin Narrow Body SOIC (S Suffix)

Errors due to common-mode signals are eliminated by the OP297's common-mode rejection of over 120 dB . The OP297's power supply rejection of over 120 dB minimizes offset voltage changes experienced in battery powered systems. Supply current of the OP297 is under $625 \mu \mathrm{~A}$ per amplifier and it can operate with supply voltages as low as $\pm 2 \mathrm{~V}$.
The OP297 utilizes a super-beta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at $25^{\circ} \mathrm{C}$, but double for every $10^{\circ} \mathrm{C}$ rise in temperature, to reach the nanoamp range above $85^{\circ} \mathrm{C}$. Input bias current of the OP 297 is under 100 pA at $25^{\circ} \mathrm{C}$ and is under 450 pA over the military temperature range.
Combining precision, low power and low bias current, the OP297 is ideal for a number of applications including instrumentation amplifiers, log amplifiers, photodiode preamplifiers and long-term integrators. For a single device, see the OP97; for a quad, see the OP497.

Figure 2. Very Low Offset

OP297-SPECIFICCTIONS

ELECTRICCLL CHARACTERISTICS ($\left(\mathrm{V}_{\mathrm{s}}= \pm 15, \mathrm{~T}_{1}=+25^{\circ}\right.$, uness ontemise noted)

Parameter	Symbol	Conditions	OP297A/E			OP297F			OP297G			
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Input Resistance Differential Mode Input Resistance Common-Mode Large-Signal Voltage Gain Input Voltage Range Common-Mode Rejection Power Supply Rejection Output Voltage Swing Supply Current Per Amplifier Supply Voltage Slew Rate Gain Bandwidth Product Channel Separation Input Capacitance	$\mathrm{V}_{\text {Os }}$			25	50		50	100		80	200	$\mu \mathrm{V}$
				0.1			0.1			0.1		$\mu \mathrm{V} / \mathrm{mo}$
	$\mathrm{I}_{\text {OS }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		20	100		35	150		50	200	pA
	I_{B}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		20	± 100		35	± 150		50	± 200	pA
	$\mathrm{e}_{\mathrm{n}} \mathrm{p}$-p	0.1 Hz to 10 Hz		0.5			0.5			0.5		$\mu \mathrm{V}$ p-p
	e_{n}	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$		20			20			20		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	e_{n}	$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$		17			17			17		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	i_{n}	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$		20			20			20		$\mathrm{fA} \sqrt{\overline{\mathrm{Hz}}}$
	$\mathrm{R}_{\text {IN }}$			30			30			30		$\mathrm{M} \Omega$
	$\mathrm{R}_{\text {INCM }}$			500			500			500		$\mathrm{G} \Omega$
		$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$										
	A_{Vo}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2000	4000		1500	3200		1200	3200		V / mV
	IVR	(Note 1)	± 13	± 14		± 13	± 14		± 13	± 14		V
	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$	120	140		114	135		114	135		dB
	PSR	$\mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	120	130		114	125		114	125		dB
	V_{O}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 14		± 13	± 14		± 13	± 14		V
	V_{O}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 13	± 13.7		± 13	± 13.7		± 13	± 13.7		V
	$\mathrm{I}_{\text {SY }}$	No Load		525	625		525	625		525	625	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {S }}$	Operating Range	± 2		± 20	± 2		± 20	± 2		± 20	V
	SR		0.05	0.15		0.05	0.15		0.05	0.15		V/ $/ \mathrm{s}$
	GBWP	$\mathrm{A}_{\mathrm{V}}=+1$		500			500			500		kHz
	CS	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \end{aligned}$		150			150			150		dB
	$\mathrm{C}_{\text {IN }}$			3			3			3		pF

NOTES
${ }^{1}$ Guaranteed by CMR test.
Specifications subject to change without notice.
ELECTRICAL CHARACTERISTICS (® $\mathrm{V}_{S}= \pm 15 \mathrm{v},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$ for OP297A, unless otherwise noted.)

			OP297A		
Parameter	Symbol	Conditions	Min	Typ	Max

NOTES

${ }^{1}$ Guaranteed by CMR test.
Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{I}_{A} \leq+85^{\circ} \mathrm{C}$ for OP297e/F/G, unless otherwise noted.)

Parameter	Symbol	Conditions	OP297E			OP297F			OP297G			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$			35	100		80	300		110	400	$\mu \mathrm{V}$
Average Input Offset Voltage Drift					0.6		0.5	2.0		0.6	2.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	I_{OS}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		50	450		80	750		80	750	pA
Input Bias Current	I_{B}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			± 450		80	± 750		80	± 750	pA
Large-Signal Voltage Gain	A_{vo}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	1200	3200		1000	2500		700	2500		V/mV
Input Voltage Range	IVR	(Note 1)	± 13	± 13.5		± 13	± 13.5		± 13	± 13.5		V
Common-Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 13$	114	130		108	130		108	130		dB
Power Supply Rejection	PSR	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \\ & \text { to } \pm 20 \mathrm{~V} \end{aligned}$	114	0.15		108	0.15		108	0.3		dB
Output Voltage Swing	V_{O}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13.4		± 13	± 13.4		± 13	± 13.4		V
Supply Current Per Amplifier	$\mathrm{I}_{\text {SY }}$	No Load		550	750		550	750		550	750	$\mu \mathrm{A}$
Supply Voltage	$\mathrm{V}_{\text {S }}$	Operating Range	± 2.5		± 20	± 2.5		± 20	± 2.5		± 20	V

NOTES

${ }^{1}$ Guaranteed by CMR test.
Specifications subject to change without notice.

Wafer Test Limits ($@ V_{S}= \pm 15, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	Limit	Units
Input Offset Voltage Input Offset Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OS}} \\ & \mathrm{I}_{\mathrm{OS}} \end{aligned}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mu \mathrm{V}$ max pA max
Input Bias Current Large-Signal Voltage Gain Input Voltage Range Common-Mode Rejection Power Supply Output Voltage Swing Supply Current Per Amplifier	I_{B} A_{vo} IVR CMR PSR V_{O} I_{SY}	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & (\text { Note } 1) \\ & \mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 2 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { No Load } \end{aligned}$	$\begin{aligned} & \pm 200 \\ & 1200 \\ & \pm 13 \\ & 114 \\ & 114 \\ & \pm 13 \\ & 625 \end{aligned}$	pA max $\mathrm{V} / \mathrm{mV} \min$ V min dB min dB min V min $\mu \mathrm{A}$ max

NOTES

1. Guaranteed by CMR test.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

DICE CHARACTERISTICS

Dimension shown in inches and (mm).
Contact factory for latest dimensions

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage	$\pm 20 \mathrm{~V}$
Input Voltage ${ }^{2}$	$\pm 20 \mathrm{~V}$
Differential Input Voltage ${ }^{2}$	40 V
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	
Z Package	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
P, S Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
OP297A (Z)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
OP297E, F (Z)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
OP297F, G (P, S)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	
Z Package	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
P, S Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Sold	$\ldots+300^{\circ} \mathrm{C}$

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{3}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Units
8-Pin Cerdip (Z)	134	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin Plastic DIP (P)	96	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO (S)	150	41	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2}$ For supply voltages less than $\pm 20 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
${ }^{3} \theta_{\mathrm{JA}}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for cerdip and P-DIP, packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

ORDERING GUIDE ${ }^{1}$

Model	Temperature Range	Package Description	Package Option
OP297AZ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Pin Cerdip	$\mathrm{Q}-8$
OP297EZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Cerdip	$\mathrm{Q}-8$
OP297EP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
OP297FP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
OP297FS	$-40^{\circ} \mathrm{C}$ t $+85^{\circ} \mathrm{C}$	8-Pin SO	SO-8
OP297FS-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SO	SO-8
OP297FS-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SO	SO-8
OP297GP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
OP297GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SO	SO-8
OP297GS-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SO	SO-8
OP297GS-REEL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SO	SO-8

NOTES

${ }^{1}$ Burn-in is available on extended industrial temperature range parts in cerdip, and plastic DIP packages. For outline information see Package Information section.
${ }^{2}$ For availability and burn-in information on SO packages, contact your local sales office.

Figure 3. Channel Separation Test Circuit

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP297 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 4. Typical Distribution of Input Offset Voltage

Figure 7. Input Bias, Offset Current vs. Temperature

Figure 10. Effective Offset Voltage vs. Source Resistance

Figure 5. Typical Distribution of Input Bias Current

Figure 8. Input Bias, Offset Current vs. Common-Mode Voltage

Figure 11. Effective $T C V_{O s}$ vs. Source Resistance

Figure 6. Typical Distribution of Input Offset Current

Figure 9. Input Offset Voltage WarmUp Drift

Figure 12. Short Circuit Current vs. Time, Temperature

OP297-Typical Performance Characteristics

Figure 13. Total Supply Current vs. Supply Voltage

Figure 16. Common-Mode Rejection vs. Frequency

Figure 19. Power Supply Rejection vs. Frequency

Figure 14. Noise Density vs. Frequency

Figure 17. Total Noise Density vs. Source Resistance

Figure 20. Open Loop Gain vs. Load Resistance

Figure 15. Open Loop Gain Linearity

Figure 18. Maximum Output Swing vs. Load Resistance

Figure 21. Maximum Output Swing vs. Frequency

Figure 22. Open Loop Gain, Phase vs. Frequency

Figure 23. Small Signal Overshoot vs. Capacitance Load

Figure 24. Open Loop Output Impedance vs Frequency

APPLICATIONS INFORMATION

Extremely low bias current over the full military temperature range makes the OP297 attractive for use in sample-and-hold amplifiers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is not necessary with the OP297 Offset voltage and $\mathrm{TCV}_{\text {OS }}$ are degraded only minimally by high source resistance, even when unbalanced.
The input pins of the OP297 are protected against large differential voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted, and may vary over the full range of the supply voltages used.
The OP297 requires very little operating headroom about the supply rails, and is specified for operation with supplies as low as +2 V . Typically, the common-mode range extends to within one volt of either rail. The output typically swings to within one volt of the rails when using a $10 \mathrm{k} \Omega$ load.

AC PERFORMANCE

The OP297'S AC characteristics are highly stable over its full operating temperature range. Unity-gain small-signal response is shown in Figure 25. Extremely tolerant of capacitive loading on the output, the OP297 displays excellent response even with 1000 pF loads (Figure 26).

Figure 25. Small-Signal Transient Response ($C_{\text {LOAD }}=100 \mathrm{pF}, A_{V C L}=+1$)

Figure 26. Small-Signal Transient Response ($C_{\text {LOAD }}=1000 \mathrm{pF}, A_{V C L}=+1$)

Figure 27. Large-Signal Transient Response $\left(A_{V C L}=+1\right)$

GUARDING AND SHIELDING

To maintain the extremely high input impedances of the OP297, care must be taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide

Figure 28. Guard Ring Layout and Connections
a humidity barrier. Even a clean PC board can have 100 pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces are operated at a voltage close to that on the inputs, as shown in Figure 28, so that leakage currents become minimal. In noninverting applications, the guard ring should be connected to the common-mode voltage at the inverting input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be on both sides of the circuit board.

OPEN-LOOP GAIN LINEARITY

The OP297 has both an extremely high gain of $2000 \mathrm{~V} / \mathrm{mV}$ minimum and constant gain linearity. This enhances the precision of the OP297 and provides for very high accuracy in high closed loop gain applications. Figure 29 illustrates the typical open-loop gain linearity of the OP297 over the military temperature range.

APPLICATIONS

PRECISION ABSOLUTE VALUE AMPLIFIER

The circuit of Figure 30 is a precision absolute value amplifier with an input impedance of $30 \mathrm{M} \Omega$. The high gain and low $\mathrm{TCV}_{\text {OS }}$ of the OP297 insure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP297 exceeds 120 dB , yielding an error of less than 2 ppm .

Figure 30. Precision Absolute Value Amplifier

PRECISION CURRENT PUMP

Maximum output current of the precision current pump shown in Figure 31 is $\pm 10 \mathrm{~mA}$. Voltage compliance is $\pm 10 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies. Output impedance of the current transmitter exceeds $3 \mathrm{M} \Omega$ with linearity better than 16 bits.

Figure 29. Open-Loop Linearity of the OP297

PRECISION POSITIVE PEAK DETECTOR

In Figure 32, the C_{H} must be of polystyrene, Teflon $^{\circledR} \star$, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of C_{H} and the bias current of the OP297.

Figure 31. Precision Current Pump

SIMPLE BRIDGE CONDITIONING AMPLIFIER

Figure 33 shows a simple bridge conditioning amplifier using the OP297. The transfer function is:

$$
V_{O U T}=V_{R E F}\left(\frac{\Delta R}{R+\Delta R}\right) \frac{R_{F}}{R}
$$

The REF43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, R_{F} should be 0.1% or better with a low temperature coefficient.

Figure 32. Precision Positive Peak Detector

Figure 33. A Simple Bridge Conditioning Amplifier Using the OP297

OP297

NONLINEAR CIRCUITS

Due to its low input bias currents, the OP297 is an ideal log amplifier in nonlinear circuits such as the square and squareroot circuits shown in Figures 34 and 35 . Using the squaring circuit of Figure 34 as an example, the analysis begins by writing a voltage loop equation across transistors $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and Q_{4}.

$$
V_{T 1} \ln \left(\frac{I_{I N}}{I_{S 1}}\right)+V_{T 2} \ln \left(\frac{I_{I N}}{I_{S 2}}\right)=V_{T 3} \ln \left(\frac{I_{O}}{I_{S 3}}\right)+V_{T 4} \ln \left(\frac{I_{R E F}}{I_{S 4}}\right)
$$

All the transistors of the MAT04 are precisely matched and at the same temperature, so the I_{S} and V_{T} terms cancel, giving:

$$
2 \ln I_{I N}=\ln I_{O}+\ln I_{R E F}=\ln \left(I_{O} \times I_{R E F}\right)
$$

Exponentiating both sides of the equation leads to:

$$
I_{O}=\frac{\left(I_{I N}\right)^{2}}{I_{R E F}}
$$

Op amp A_{2} forms a current-to-voltage converter which gives $\mathrm{V}_{\text {OUT }}=\mathrm{R} 2 \times 10$. Substituting $\left(\mathrm{V}_{\mathrm{IN}} / \mathrm{R} 1\right)$ for I_{IN} and the above equation for I_{O} yields:

$$
V_{O U T}=\left(\frac{R 2}{I_{R E F}}\right)\left(\frac{V_{I N}}{R 1}\right)^{2}
$$

A similar analysis made for the square-root circuit of Figure 35 leads to its transfer function:

$$
V_{O U T}=R 2 \sqrt{\frac{\left(V_{I N}\right)\left(I_{R E F}\right)}{R 1}}
$$

Figure 34. Squaring Amplifier

Figure 35. Square-Root Amplifier

In these circuits, $\mathrm{I}_{\mathrm{REF}}$ is a function of the negative power supply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference may be used to set $\mathrm{I}_{\text {REF }}$. An important consideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R4 can be changed to scale $\mathrm{I}_{\text {REF }}$, or R1, and R2 can be varied to keep the output voltage within the usable range.
Unadjusted accuracy of the square-root circuit is better than 0.1% over an input voltage range of 100 mV to 10 V . For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%.

OP297 SPICE MACRO-MODEL

Figures 36 and 37 show the node end net list for a SPICE macro model of the OP297. The model is a simplified version of the actual device and simulates important dc parameters such as $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}, \mathrm{A}_{\mathrm{VO}}, \mathrm{CMR}, \mathrm{V}_{\mathrm{O}}$ and I_{SY}. AC parameters such as slew rate, gain and phase response and CMR change with frequency are also simulated by the model.
The model uses typical parameters for the OP297. The poles and zeros in the model were determined from the actual open and closed-loop gain and phase response of the OP297. In this way, the model presents an accurate ac representation of the actual device. The model assumes an ambient temperature of $25^{\circ} \mathrm{C}$.

Figure 36. OP297 Macro-Model

Table I. SPICE Net-List

- POLE AT 1.8 MHz
-

R10	17	98	1 E 6
C5	17	98	$884 \mathrm{E}-15$
G2	98	17	$16231 \mathrm{E}-6$

G2 98 17 16231 E-6

- COMMON-MODE GAIN NETWORK WITH ZERO AT 50 HZ

R11	18	19	1 E 6
C6	18	19	$3.183 \mathrm{E}-9$
R12	19	98	1
E2	18	98	$323100 \mathrm{E}-3$

-
- POLE AT 6 MHz
-

R15	22	98	1 E 6
C8	22	98	$26.53 \mathrm{E}-15$
G3	98	22	$17231 \mathrm{E}-6$

- OUTPUT STAGE
-

R16	23	99	160 K
R17	23	50	160 K
ISY	99	50	$331 \mathrm{E}-6$
R18	25	99	200
R19	25	50	200
L1	25	30	$1 \mathrm{E}-7$
G4	28	50	$22255 \mathrm{E}-3$
G5	29	50	$25225 \mathrm{E}-3$
G6	25	99	$99225 \mathrm{E}-3$
G7	50	25	$22505 \mathrm{E}-3$
V4	26	25	1.8
V5	25	27	1.3
D5	22	26	DX
D6	27	22	DX
D7	99	28	DX
D8	99	29	DX
D9	50	28	DY
D10	50	29	DY

-
- MODELS USED
- MODEL QX NPN BF=2.5E6)
- MODEL DX D IS = $1 \mathrm{E}-15$)
- MODEL DY D IS = $1 \mathrm{E}-15 \mathrm{BV}=50$)
- ENDS OP297

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
8-Lead Plastic DIP
(N-8)

8-Lead Cerdip
 (Q-8)

8-Lead Narrow Body (SOIC)
(SO-8)

8/21/97 4:00 PM
OP297

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

