DUAL POWER OPERATIONAL AMPLIFIERS

- OUTPUT CURRENT TO 1 A
- OPERATES AT LOW VOLTAGES
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDOWN

DESCRIPTION

The L272 is a monolithic integrated circuits in Powerdip, Minidip and SO packages intended for use as power operational amplifiers in a wide range of applications including servo amplifiers and power supplies, compacts disc, VCR, etc.
The high gain and high output power capability provide superior performance whatever an operational amplifier/power booster combination is required.

PIN CONNECTIONS (top view)

BLOCK DIAGRAMS

SCHEMATIC DIAGRAM (one only)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{s}	Supply Voltage	28	V
$\mathrm{~V}_{\mathrm{i}}$	Input Voltage	V_{s}	
V_{i}	Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{s}}$	
I_{0}	DC Output Current	1	A
I_{p}	Peak Output Current (non repetitive)	1.5	A
$\mathrm{P}_{\text {tot }}$	Power Dissipation at:		
	$\mathrm{T}_{\text {amb }}=80^{\circ} \mathrm{C}$ (L272), $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}(\mathrm{L} 272 \mathrm{M}), \mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}(\mathrm{L272D})$ $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}($ L272 $)$	1.2	D
$\mathrm{T}_{\text {op }}$	Operating Temperature Range (L272D)	-40 to 85	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol		Parameter	Powerdip	SO16	Minidip	Unit
$\mathrm{R}_{\text {th }} \mathrm{j}$-case	Thermal Resistance Junction-pins	Max.	15	-	${ }^{*} 70$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}} j$-amb	Thermal Resistance Junction-ambient	Max.	70	-	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th }} j$-alumina	Thermal Resistance Junction-alumina	Max.	-	${ }^{* *} 50$	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

* Thermal resistance junction-pin 4
* Thermal resistance junctions-pins with the chip soldered on the middle of an alumina supporting substrate measuring $15 \times 20 \mathrm{~mm} ; 0.65 \mathrm{~mm}$ thickness and infinite heatsink.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply Voltage		4		28	V
$\mathrm{I}_{\text {s }}$	Quiescent Drain Current	$\begin{array}{ll} V_{\mathrm{O}}=\frac{\mathrm{V}_{\mathrm{S}}}{2} & \begin{array}{l} \mathrm{V}_{\mathrm{s}}=24 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} \end{array} \end{array}$		$\begin{gathered} 8 \\ 7.5 \end{gathered}$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\underset{\mathrm{mA}}{\mathrm{~mA}}$
lb	Input Bias Current			0.3	2.5	$\mu \mathrm{A}$
V os	Input Offset Voltage			15	60	mV
los	Input Offset Current			50	250	nA
SR	Slew Rate			1		V/us
B	Gain-bandwidth Product			350		kHz
R_{i}	Input Resistance		500			$\mathrm{k} \Omega$
G_{v}	O. L. Voltage Gain	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$	60	$\begin{aligned} & 70 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
eN	Input Noise Voltage	$\mathrm{B}=20 \mathrm{kHz}$		10		$\mu \mathrm{V}$
IN	Input Noise Current	$\mathrm{B}=20 \mathrm{kHz}$		200		pA
CRR	Common Mode Rejection	$\mathrm{f}=1 \mathrm{kHz}$	60	75		dB
SVR	Supply Voltage Rejection	$\begin{gathered} \mathrm{f}=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{R}}=0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}}= \pm 12 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}}= \pm 6 \mathrm{~V} \end{gathered}$	54	$\begin{aligned} & 70 \\ & 62 \\ & 56 \end{aligned}$		dB
V	Output Voltage Swing	$\begin{aligned} & I_{p}=0.1 \mathrm{~A} \\ & I_{p}=0.5 \mathrm{~A} \end{aligned}$	21	$\begin{gathered} 23 \\ 22.5 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{C}_{\text {s }}$	Channel Separation	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$		dB
d	Distortion	$f=1 \mathrm{kHz}, \mathrm{G}_{\mathrm{v}}=3 \mathrm{~dB}, \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		0.5		\%
$\mathrm{T}_{\text {sd }}$	Thermal Shutdown Junction Temperature			145		${ }^{\circ} \mathrm{C}$

\qquad

Figure 1: Quiescent Current versus Supply Voltage

Figure 3: Open Loop Voltage Gain

Figure 5 : Output Voltage Swing versus Load Current

Figure 2 : Quiescent Drain Current versus Temperature

Figure 4 : Output Voltage Swing versus Load Current

Figure 6 : Supply Voltage Rejection versus Frequency

SGS-THOMSON
MIMR(1)

Figure 7 : Channel Separation versus
Frequency

APPLICATION SUGGESTION

NOTE

In order to avoid possible instability occuring into final stage the usual suggestions for the linear power stages are useful, as for instance :

Figure 8 : Common Mode Rejection versus Frequency

- layout accuracy ;
- a 100 nF capacitor corrected between supply pins and ground ;
- boucherot cell (0.1 to $0.2 \mu \mathrm{~F}+1 \Omega$ series) between outputs and ground or across the load.

Figure 9 : Bidirectional DC Motor Control with μ P Compatible Inputs
ET,

Figure 10 : Servocontrol for Compact-disc
\square
Figure 11 : Capstan Motor Control in Video Recorders

\qquad

Figure 12 : Motor Current Control Circuit.

Figure 13 : Bidirectional Speed Control of DC Motors.
For circuit stability ensure that $R_{x}>\frac{2 R 3 \circ R 1}{R_{M}}$ where $R_{M}=$ internal resistance of motor.
The voltage available at the terminals of the motor is $V_{M}=2\left(V_{i} \cdot \frac{V_{s}}{2}\right)+\left|R_{0}\right| \cdot I M$ where $\left|R_{0}\right|=\frac{2 R \circ R 1}{R_{X}}$ and I_{M} is the motor current.

POWERDIP 16 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			20.0		0.346	0.787
E		2.54			0.100	
e		17.78				
e3			7.10			0.280
F			5.10		0.130	0.201
I						
L						
Z						

MINIDIP PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A		3.32			0.131	
a1	0.51			0.020		
B	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
e		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0.260
I			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

S016 NARROW PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.020	
c1	45° (typ.)					
D	9.8		10	0.386		0.394
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.150		0.050
M			0.62			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1995 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

