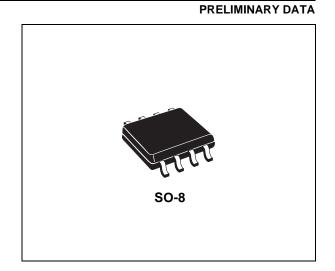


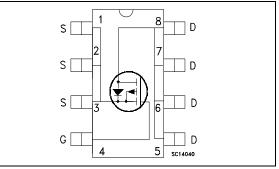
STS10PF30L

P-CHANNEL 30V - 0.012 Ω - 10A SO-8 STripFET™ II POWER MOSFET

ТҮРЕ	V _{DSS}	R _{DS(on)}	ID
STS10PF30L	30V	<0.014 Ω	10 A


- TYPICAL R_{DS}(on) = 0.012 Ω
- STANDARDOUTLINEFOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY
- LOW THRESHOLD DRIVE

DESCRIPTION


This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance.

APPLICATIONS

- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT
- LOAD SWITCH

INTERNAL SCHEMATIC DIAGRAM

Ordering Information

•······			
SALES TYPE	MARKING	PACKAGE	PACKAGING
STS10PF30L	S10PF30L	SO-8	TAPE & REEL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	30	V
V _{GS}	Gate- source Voltage	± 16	V
I _D	Drain Current (continuous) at $T_C = 25^{\circ}C$	10	А
ID	Drain Current (continuous) at $T_C = 100^{\circ}C$	6	А
I _{DM} (●)	Drain Current (pulsed)	40	А
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	2.5	W

Note: For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

STS10PF30L

THERMAL DATA

Rthj-amb Rthj-lead(*) Thermal Resistance Junction-ambient Thermal Resistance Junction-leads Maximum Lead Temperature For Soldering Purpos storage temperature	Max Max e Typ	47 16 150 -55 to 150	°C/W °C/W °C °C
---	---------------------	-------------------------------	--------------------------

(*) When Mounted on 1 inch² FR-4 board, 2 oz of Cu and $t \leq$ 10 sec.

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 4.5 V	I _D = 5 A I _D = 5 A		0.012 0.015	0.014 0.018	Ω Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g fs	Forward Transconductance	V _{DS} = 10 V I _D = 5 A		31		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		2300 750 115		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			72 87		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = 15V I _D = 10A V _{GS} =4.5V (see test circuit, Figure 2)		29 6.8 7.6	39	nC nC nC

SWITCHING OFF (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$V_{DD} = 15 V$ $R_G = 4.7\Omega$, (Resistive Load	I _D = 5 A V _{GS} = 4.5 V , Figure 1)		89 27		ns ns

SOURCE DRAIN DIODE (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)				10 40	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 10 A V _{GS} = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 10 \text{ A} & \text{di/dt} = 100 \text{A}/\mu\text{s} \\ V_{DD} &= 15 \text{ V} & T_j = 150^\circ\text{C} \\ (\text{see test circuit, Figure 3}) \end{split}$		48.5 68 2.8		ns nC A

(*) Pulse width \leq 300 $\mu s,$ duty cycle 1.5 %. (•) Pulse width limited by T_{JMAX}

57

Fig. 1: Switching Times Test Circuits For Resistive Load

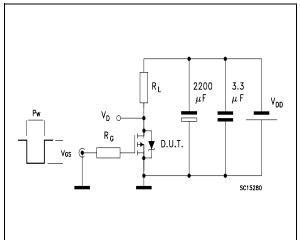
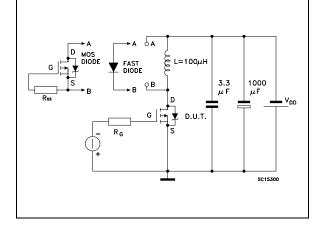
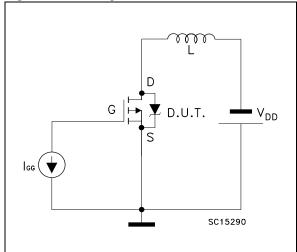
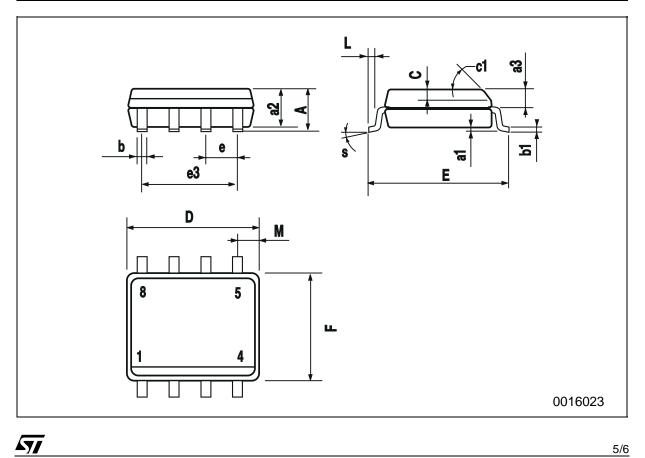


Fig. 3: Test Circuit For Diode Recovery Behaviour


Fig. 2: Gate Charge test Circuit

57

SO-8 MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45	(typ.)		
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (r	nax.)		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com