
2N3906

SMALL SIGNAL TRANSISTORS (PNP)

Dimensions in inches and (millimeters)

FEATURES

- PNP Silicon Epitaxial Planar Transistor for switching and amplifier applications.
- As complementary type, the NPN transistor 2N3904 is recommended.
- On special request, this transistor is also manufactured in the pin configuration TO-18.
- This transistor is also available in the SOT-23 case with the type designation MMBT3906.

MECHANICAL DATA

Case: TO-92 Plastic Package Weight: approx. 0.18g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

	SYMBOL	VALUE	UNIT
Collector-Base Voltage	-V _{CBO}	40	Volts
Collector-Emitter Voltage	-Vceo	40	Volts
Emitter-Base Voltage	–Vebo	5.0	Volts
Collector Current	-I _C	200	mA
Power Dissipation at T _A = 25° C at T _C = 25° C	Ptot	625 1.5	mW Watts
Thermal Resistance Junction to Ambient Air	Reja	250 ⁽¹⁾	°C/W
Junction Temperature	Tj	150	°C
Storage Temperature Range	Ts	– 65 to +150	°C

NOTES:

(1) Valid provided that leads are kept at ambient temperature.

2N3906

ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

	SYMBOL	MIN.	MAX.	UNIT
Collector-Base Breakdown Voltage at $-I_{C} = 10 \ \mu A$, $I_{E} = 0$	-V(BR)CBO	–V(BR)CBO 40		Volts
Collector-Emitter Breakdown Voltage at $-I_{C} = 1$ mA, $I_{B} = 0$	-V(BR)CEO	40	_	Volts
Emitter-Base Breakdown Voltage at $-I_E = 10 \ \mu$ A, $I_C = 0$	-V(BR)EBO	5	-	Volts
Collector Saturation Voltage at $-I_C = 10 \text{ mA}, -I_B = 1 \text{ mA}$ at $-I_C = 50 \text{ mA}, -I_B = 5 \text{ mA}$	–VCEsat –VCEsat		0.25 0.4	Volts Volts
Base Saturation Voltage at $-I_C = 10 \text{ mA}$, $-I_B = 1 \text{ mA}$ at $-I_C = 50 \text{ mA}$, $-I_B = 5 \text{ mA}$	−VBEsat −VBEsat		0.85 0.95	Volts Volts
Collector-Emitter Cutoff Current at $-V_{EB} = 3 V$, $-V_{CE} = 30 V$	-ICEV	_	50	nA
Emitter-Base Cutoff Current at $-V_{EB} = 3 V, -V_{CE} = 30 V$	-I _{EBV}	_	50	nA
DC Current Gain at $-V_{CE} = 1 V$, $-I_C = 0.1 mA$ at $-V_{CE} = 1 V$, $-I_C = 1 mA$ at $-V_{CE} = 1 V$, $-I_C = 10 mA$ at $-V_{CE} = 1 V$, $-I_C = 50 mA$ at $-V_{CE} = 1 V$, $-I_C = 100 mA$	hFE hFE hFE hFE hFE	60 – 80 – 100 300 60 – 30 –		- - - -
Input Impedance at $-V_{CE} = 10 \text{ V}, -I_C = 1 \text{ mA}, \text{ f} = 1 \text{ kHz}$	hie	1	10	kΩ
Voltage Feedback Ratio at -V _{CE} = 10 V, -I _C = 1 mA, f = 1 kHz	h _{re}	0.5 · 10 ⁻⁴	8 · 10 ⁻⁴	_
Gain-Bandwidth Product at $-V_{CE} = 20 \text{ V}, -I_{C} = 10 \text{ mA}, \text{ f} = 100 \text{ MHz}$	fT	fT 250		MHz
Collector-Base Capacitance at $-V_{CB} = 5$ V, f = 100 kHz	Ссво	_	4.5	pF
Emitter-Base Capacitance at $-V_{EB} = 0.5$ V, f = 100 kHz	Сево		10	pF

2N3906

ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

	SYMBOL	MIN.	MAX.	UNIT
Small Signal Current Gain at -V _{CE} = 10 V, -IC = 1 mA, f = 1 kHz	h _{fe}	100	400	_
Output Admittance at $-V_{CE} = 1 V$, $-I_C = 1 mA$, f = 1 kHz	hoe	1	40	μS
Noise Figure at –VcE = 5 V, –Ic = 100 μA, R _G = 1 kΩ, f = 10 15000 Hz	NF	_	4	dB
Delay Time (see Fig. 1) at $-I_{B1} = 1 \text{ mA}, -I_C = 10 \text{ mA}$	ta	_	35	ns
Rise Time (see Fig. 1) at -I _{B1} = 1 mA, -I _C = 10 mA	tr	_	35	ns
Storage Time (see Fig. 2) at $I_{B1} = -I_{B2} = 1 \text{ mA}, -I_C = 10 \text{ mA}$	ts	-	225	ns
Fall Time (see Fig. 2) at $I_{B1} = -I_{B2} = 1 \text{ mA}, -I_{C} = 10 \text{ mA}$	tr	_	75	ns

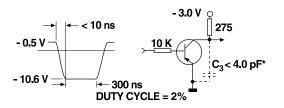


Fig. 1: Test circuit for delay and rise time * total shunt capacitance of test jig and connectors

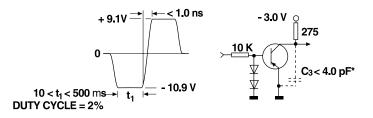


Fig. 2: Test circuit for storage and fall time * total shunt capacitance of test jig and connectors

