
2N4124

Small Signal Transistors (NPN)

Dimensions in inches and (millimeters)

FEATURES

- NPN Silicon Epitaxial Transistor for switching and amplifier applications.
- Especially suitable for AF-driver and low-power output stages.
- As complementary type, the PNP transistor 2N4126 is recommended.

MECHANICAL DATA

Case: TO-92 Plastic Package Weight: approx. 0.18 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

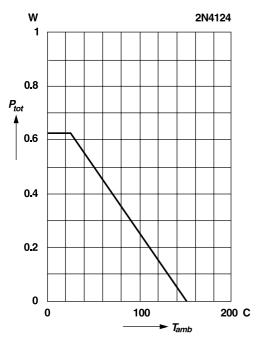
Ratings at 25 °C ambient temperature unless otherwise specified

Value	Unit	
25	V	
30	V	
5	V	
200	mA	
800	mA	
50	mA	
625 ¹⁾	mW	
150	°C	
-65 to +150	°C	
of	-65 to +150 2 mm from case.	

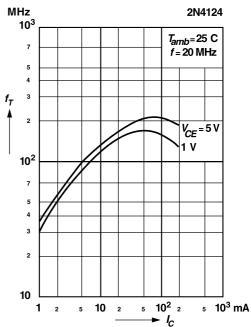
2N4124

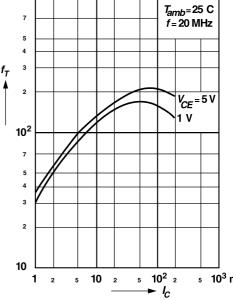
ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified


	Symbol	Min.	Тур.	Max.	Unit
DC Current Gain at V _{CE} = 1 V, I _C = 2.0 mA at V _{CE} = 1 V, I _C = 50 mA	h _{FE} h _{FE}	120 -	_ 60	360 -	
Collector-Base Cutoff Current at $V_{CB} = 20 V$	I _{CBO}	-	-	50	nA
Emitter-Base Cutoff Current at $V_{EB} = 3 V$	I _{EBO}	-	-	50	nA
Collector Saturation Voltage at $I_{C} = 50$ mA, $I_{B} = 5$ mA	V _{CESAT}	-	-	0.3	V
Base Saturation Voltage at $I_{C} = 50$ mA, $I_{B} = 5$ mA	V _{BESAT}	-	-	0.95	V
Collector-Emitter Breakdown Voltage at $I_{C} = 1 \text{ mA}$	V _{(BR)CEO}	25	-	-	V
Collector-Base Breakdown Voltage at $I_C = 10 \ \mu A$	V _{(BR)CBO}	30	-	-	V
Emitter-Base Breakdown Voltage at $I_E = 10 \ \mu A$	V _{(BR)EBO}	5	-	-	V
Gain-Bandwidth Product at V_{CE} = 5 V, I_{C} = 10 mA, f = 50 MHz	f _T	-	200	-	MHz
Collector-Base Capacitance at V_{CB} = 10 V, f = 1 MHz	C _{CBO}	-	12	-	pF
	R _{thJA}			2001)	K/W

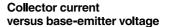
RATINGS AND CHARACTERISTIC CURVES 2N4124

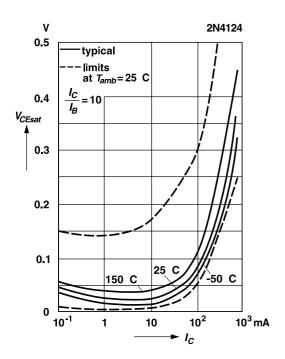

Admissible power dissipation versus ambient temperature


Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

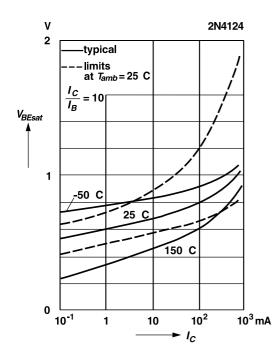
2N4124 mΑ 10³ 25 C 5 2 150 C -50 C 10² I_C 5 typical limits 2 at T_{amb}=25 C 10 5 1 2 1 1 5 t I 2 1 10⁻¹ 0 1 2 V → V_{BE}

> Gain-bandwidth product versus collector current




Pulse thermal resistance versus pulse duration

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case



RATINGS AND CHARACTERISTIC CURVES 2N4124

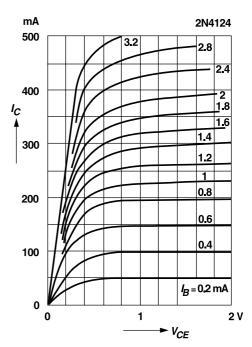
Collector saturation voltage versus collector current

Base saturation voltage versus collector current

2N4124 1000 $V_{CE} = 1 \text{ V}$ 700 500 400 h_{FE} 300 150 C 200 T_{amb} = 25 C -50 C 100 70 50 40 30 20 10

Common emitter collector characteristics

10

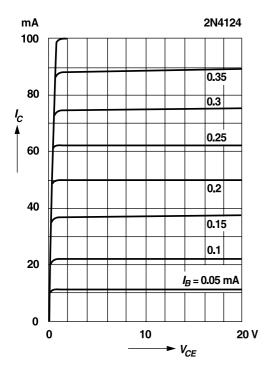

1

10²

► I_C

10³

10⁻¹



DC current gain versus collector current

RATINGS AND CHARACTERISTIC CURVES 2N4124

Common emitter collector characteristics

mΑ 2N4124 500 /0.9 0.85 400 I_c 4 300 0.8 200 0.75 100 $V_{BE} = 0.7 \text{ V}$ 0 0 1 2 V → V_{CE}

Common emitter collector characteristics

