
BC546 THRU BC549

Small Signal Transistors (NPN)

Dimensions in inches and (millimeters)

FEATURES

- NPN Silicon Epitaxial Planar Transistors
- These transistors are subdivided into three groups A, B and C according to their current gain. The type BC546 is available in groups A and B, however, the types BC547 and BC548 can be supplied in all three groups. The BC549 is a low-noise type and available in groups B and C. As complementary types, the PNP transistors BC556 ... BC559 are recommended.
- ◆ On special request, these transistors are also manufactured in the pin configuration TO-18.

MECHANICAL DATA

Case: TO-92 Plastic Package Weight: approx. 0.18 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

		Symbol	Value	Unit
Collector-Base Voltage	BC546 BC547 BC548, BC549	V _{CBO} V _{CBO} V _{CBO}	80 50 30	V V V
Collector-Emitter Voltage	BC546 BC547 BC548, BC549	V _{CES} V _{CES} V _{CES}	80 50 30	V V V
Collector-Emitter Voltage	BC546 BC547 BC548, BC549	V _{CEO} V _{CEO} V _{CEO}	65 45 30	V V V
Emitter-Base Voltage	BC546, BC547 BC548, BC549	V _{EBO} V _{EBO}	6 5	V
Collector Current		I _C	100	mA
Peak Collector Current		I _{CM}	200	mA
Peak Base Current		I _{BM}	200	mA
Peak Emitter Current		-I _{EM}	200	mA
Power Dissipation at T _{amb} = 25 °C		P _{tot}	500 ¹⁾	mW
Junction Temperature		Tj	150	°C
Storage Temperature Range		T _S	-65 to +150	°C

¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

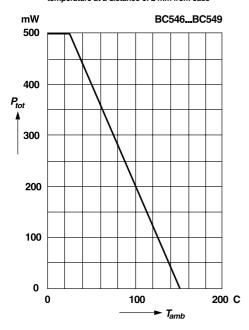
BC546 THRU BC549

ELECTRICAL CHARACTERISTICS

	Symbol	Min.	Тур.	Max.	Unit	
h-Parameters at V _{CE} = 5 V, I _C = 2 mA, f = 1 kHz, Small Signal Current Gain			000			
Current Gain Group A B C Input Impedance Current Gain Group A	h _{fe} h _{fe} h _{fe}	_ _ _ _ 1.6	220 330 600 2.7	_ _ _ 4.5	- - -	
B C	h _{ie} h _{ie} h _{ie}	3.2	4.5 8.7	8.5 15	kΩ kΩ kΩ	
Output Admittance Current Gain Group A B C	h _{oe} h _{oe} h _{oe}	_ _ _	18 30 60	30 60 110	μS μS μS	
Reverse Voltage Transfer Ratio Current Gain Group A B C	h _{re} h _{re} h _{re}	_ _ _	1.5 · 10 ⁻⁴ 2 · 10 ⁻⁴ 3 · 10 ⁻⁴	_ _ _	_ _ _	
DC Current Gain at V _{CE} = 5 V, I _C = 10μA						
Current Gain Group A B C	h _{FE} h _{FE} h _{FE}	_ _ _	90 150 270	_ _ _	_ _ _	
at V _{CE} = 5 V, I _C = 2 mA Current Gain Group A B C	h _{FE} h _{FE} h _{FE}	110 200 420	180 290 500	220 450 800	_ _ _	
at V _{CE} = 5 V, I _C = 100 mA Current Gain Group A B C	h _{FE} h _{FE} h _{FE}	_ _ _	120 200 400	_ _ _	 - -	
Thermal Resistance Junction to Ambient Air	R _{thJA}	_	_	250 ¹⁾	K/W	
Collector Saturation Voltage at $I_C = 10$ mA, $I_B = 0.5$ mA at $I_C = 100$ mA, $I_B = 5$ mA	V _{CEsat} V _{CEsat}	- -	80 200	200 600	mV mV	
Base Saturation Voltage at $I_C = 10$ mA, $I_B = 0.5$ mA at $I_C = 100$ mA, $I_B = 5$ mA	V _{BEsat} V _{BEsat}	-	700 900		mV mV	
Base-Emitter Voltage at $V_{CE} = 5 \text{ V}$, $I_{C} = 2 \text{ mA}$ at $V_{CE} = 5 \text{ V}$, $I_{C} = 10 \text{ mA}$	V _{BE}	580 -	660 -	700 720	mV mV	
Collector-Emitter Cutoff Current at $V_{CE} = 80 \text{ V}$ BC546 at $V_{CE} = 50 \text{ V}$ BC547	I _{CES}	-	0.2 0.2	15 15	nA nA	
at V _{CE} = 30 V BC548, BC549	I _{CES}	_	0.2	15	nA	
at $V_{CE} = 80 \text{ V}$, $T_j = 125 ^{\circ}\text{C}$ at $V_{CE} = 50 ^{\circ}\text{V}$, $T_j = 125 ^{\circ}\text{C}$ BC546 BC547	I _{CES}			4 4	μ Α μ Α	
1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case						

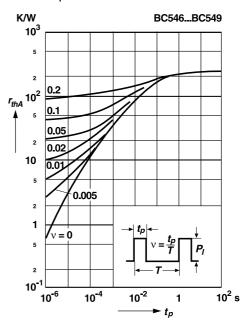
BC546 THRU BC549

ELECTRICAL CHARACTERISTICS


Ratings at 25 °C ambient temperature unless otherwise specified

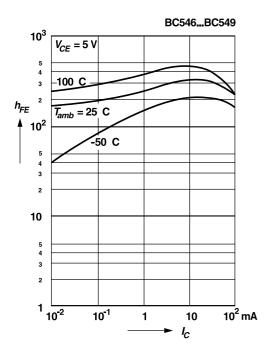
	Symbol	Min.	Тур.	Max.	Unit
at V _{CE} = 30 V, T _j = 125 °C BC548, BC549	I _{CES}	-	_	4 4	μΑ μΑ
Gain-Bandwidth Product at $V_{CE} = 5 \text{ V}$, $I_C = 10 \text{ mA}$, $f = 100 \text{ MHz}$	f _T	_	300	_	MHz
Collector-Base Capacitance at V _{CB} = 10 V, f = 1 MHz	C _{CBO}	_	3.5	6	pF
Emitter-Base Capacitance at V _{EB} = 0.5 V, f = 1 MHz	C _{EBO}	_	9	_	pF
Noise Figure at V_{CE} = 5 V, I_{C} = 200 μ A, R_{G} = 2 $k\Omega$, f = 1 kHz, Δf = 200 Hz BC546, BC547	F	_	2	10	dB
BC548 BC549	F	_	1.2	4	dB
at V_{CE} = 5 V, I_{C} = 200 μ A, R_{G} = 2 k Ω , f = 3015000 Hz BC549	F	_	1.4	4	dB

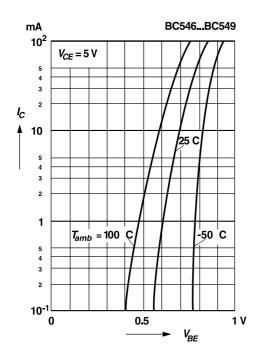
RATINGS AND CHARACTERISTIC CURVES BC546 THRU BC549


Admissible power dissipation versus temperature

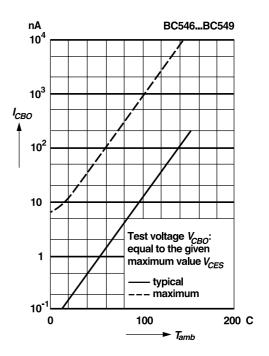
Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

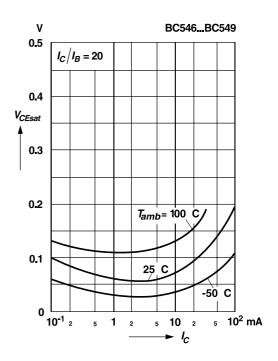
Pulse thermal resistance versus pulse duration


Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

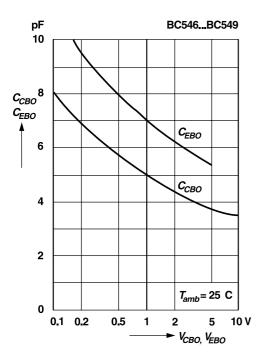


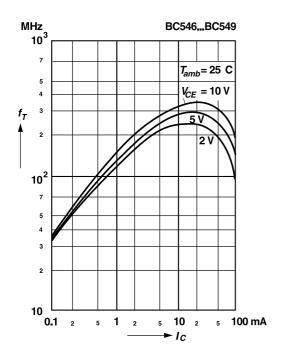
RATINGS AND CHARACTERISTIC CURVES BC546 THRU BC549


DC current gain versus collector current

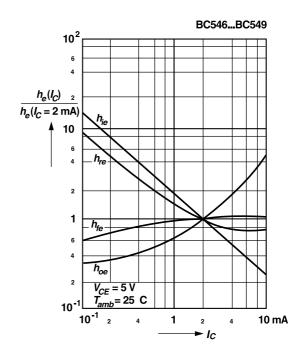

Collector current versus base-emitter voltage

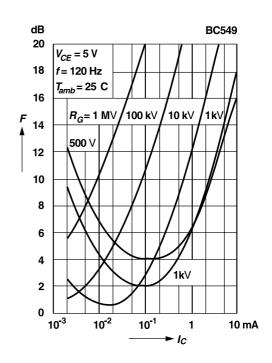
Collector-base cutoff current versus ambient temperature


Collector saturation voltage versus collector current

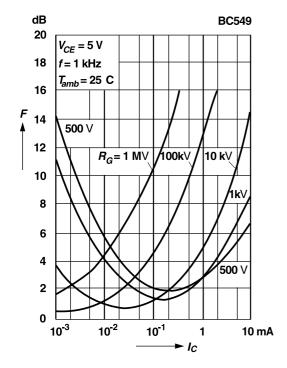


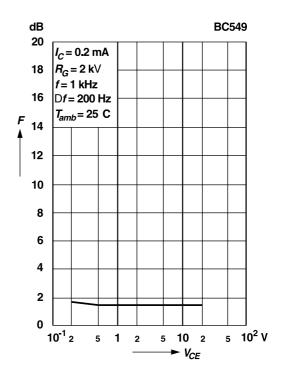
RATINGS AND CHARACTERISTIC CURVES BC546 THRU BC549


Collector-base capacitance, Emitter-base capacitance versus reverse bias voltage


Gain-bandwidth product versus collector current

Relative h-parameters versus collector current


Noise figure versus collector current



RATINGS AND CHARACTERISTIC CURVES BC546 THRU BC549

Noise figure versus collector current

Noise figure versus collector emitter voltage

