MPS2907A ### **SMALL SIGNAL TRANSISTORS (PNP)** Dimensions in inches and (millimeters) ### **FEATURES** - PNP Silicon Epitaxial Planar Transistor for switching and amplifier applications. - On special request, this transistor is also manufactured in the pin configuration TO-18. - This transistor is also available in the SOT-23 case with the type designation MMBT2907A. ### **MECHANICAL DATA** Case: TO-92 Plastic Package Weight: approx. 0.18g ### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified | | SYMBOL | VALUE | UNIT | |--|-------------------|--------------|-------------| | Collector-Base Voltage | -Vсво | 60 | Volts | | Collector-Emitter Voltage | -Vceo | 60 | Volts | | Emitter-Base Voltage | -V _{EBO} | 5.0 | Volts | | Collector Current | -Ic | 600 | mA | | Power Dissipation at T _A = 25°C Derate above 25°C | P _{tot} | 625
5.0 | mW
mW/°C | | Power Dissipation at T _C = 25°C Derate above 25°C | Ptot | 1.5
12 | mW
mW/°C | | Thermal Resistance Junction to Ambient Air | R _{ΘJA} | 200 | °C/W | | Thermal Resistance Junction Case | Rejc | 83.3 | °C/W | | Junction Temperature | Tj | 150 | °C | | Storage Temperature Range | Ts | -500 to +150 | °C | #### NOTES: (1) Valid provided that leads are kept at ambient temperature. # **MPS2907A** ### **ELECTRICAL CHARACTERISTICS** Ratings at 25°C ambient temperature unless otherwise specified | | SYMBOL | MIN. | MAX. | UNIT | |---|---------------------------------|-------------------------------|-------------------------|------------------| | Collector-Base Breakdown Voltage at $-I_C = 10 \mu A$, $I_E = 0$ | -V(BR)CBO | 60 | - | Volts | | Collector-Emitter Breakdown Voltage at $-I_C = 10$ mA, $I_B = 0$ | -V(BR)CEO | 60 | _ | Volts | | Emitter-Base Breakdown Voltage at $-I_E = 10 \ \mu A, \ I_C = 0$ | -V(BR)EBO | 5 | _ | Volts | | Collector-Emitter Saturation Voltage
at -I _C = 150 mA, -I _B = 15 mA
at -I _C = 500 mA, -I _B = 50 mA | -VCEsat | _
_ | 0.4
1.6 | Volts
Volts | | Base-Emitter Saturation Voltage
at -Ic = 150 mA, -IB = 15 mA
at -Ic = 500 mA, -IB = 50 mA | -VBEsat
-VBEsat | _
_ | 1.3
2.6 | Volts
Volts | | Collector Cutoff Current at -VEB = 0.5 V, -VCE = 30 V | -I _{CEX} | _ | 50 | nA | | Collector Cutoff Current at $-V_{CB} = 50 \text{ V}$, $I_E = 0$ at $-V_{CB} = 50 \text{ V}$, $I_E = 0$, $T_{A}=150^{\circ}\text{C}$ | -Ісво | _ | 0.01
10 | μА | | Base Cutoff Current at -V _{EB} = 0.5 V, -V _{CE} = 30 V | -IBL | _ | 50 | nA | | DC Current Gain at -Vce = 10 V, -lc = 0.1 mA at -Vce = 10 V, -lc = 1 mA at -Vce = 10 V, -lc = 10 mA at -Vce = 10 V, -lc = 150 mA at -Vce = 10 V, -lc = 500 mA | hfe
hfe
hfe
hfe
hfe | 75
100
100
100
50 | -
-
-
300
- | -
-
-
- | | Gain-Bandwidth Product
at -Vce = 20 V, -Ic = 50 mA, f = 100 MHz | fτ | 200 | _ | MHz | | Output Capacitance at –Vcb = 10 V, f = 1 MHz, IE = 0 | Cobo | _ | 8.0 | pF | | Emitter-Base Capacitance at -VEB = 2.0 V, f = 1 MHz, IE = 0 | Cibo | _ | 30 | pF | ## **MPS2907A** ### **ELECTRICAL CHARACTERISTICS** Ratings at 25°C ambient temperature unless otherwise specified | | SYMBOL | MIN. | MAX. | UNIT | |---|------------------|------|------|------| | Turn-On Time at $-I_{B1} = 15$ mA, $-I_{C} = 150$ mA, $-V_{CC} = 30$ V | t _{on} | - | 45 | ns | | Delay Time (See Fig. 1) at $-l_{B1} = 15$ mA, $-l_{C} = 150$ mA, $-V_{CC} = 30$ V | td | - | 35 | ns | | Rise Time (See Fig. 1)
at -I _{B1} = 15 mA, -I _C = 150 mA, -V _{CC} = 30 V | t _r | - | 35 | ns | | Turn-Off Time at $-I_{B1} = -I_{B2} = 15$ mA, $-I_{C} = 150$ mA, $-V_{CC} = 6$ V | t _{off} | - | 100 | ns | | Storage Time (See Fig. 2) at $I_{B1} = -I_{B2} = 15$ mA, $-I_{C} = 150$ mA, $-V_{CC} = 6$ V | ts | - | 225 | ns | | Fall Time (See Fig. 2)
at I _{B1} = -I _{B2} = 15 mA, -I _C = 150 mA, -V _{CC} = 6 V | t _f | - | 75 | ns | ### SWITCHING TIME EQUIVALENT TEST CIRCUIT FIGURE 1 - DELAY AND RISE TIME TEST CIRCUIT FIGURE 2 - STORAGE AND FALL TIME TEST CIRCUIT