

General Description

The MAX4854H analog switch operates from a single 2V to 5.5V supply and can handle signals greater than the supply rail. The device features four low on-resistance (7Ω) , single-pole/single-throw (SPST) switches, with 27.5pF on-capacitance, making it ideal for data signals. If the input signal exceeds the supply rail, the switch becomes high impedance and prevents the signal from feeding through to the output.

The MAX4854H is available in the space-saving (3mm x 3mm), 16-pin thin QFN package and operates over the extended temperature range of -40°C to +85°C.

Applications

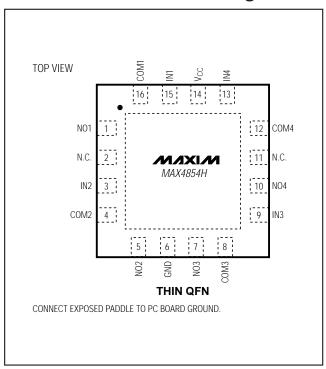
USB Switching High-Bandwidth Data Switching Cellular Phones **Notebook Computers**

PDAs and Other Handheld Devices

Features

- ♦ USB 2.0 Full Speed (12MB) and USB 1.1 Signal **Switching Compliant**
- ♦ Overvoltage Protection if Signal Exceeds VCC
- ♦ 150MHz -3dB Bandwidth
- ♦ 27.5pF On-Capacitance
- ♦ +2V to +5.5V Supply Range
- ♦ 7Ω On-Resistance
- ♦ Low 10µA Supply Current
- ♦ 1.8V Logic Compatible
- Available in a Space-Saving (3mm x 3mm), 16-Pin TQFN Package

Ordering Information


PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4854HETE	-40°C to +85°C	16 TQFN-EP*	ACD

^{*}EP = Exposed paddle.

Block Diagram/Truth Table

MAX4854H MIXIM MAX4854H NO COM1 0 OFF NO1 7Ω IN1 ON SWITCHES SHOWN NO2 FOR LOGIC 0 INPUT 70 NO3 7Ω IN3 COM4 NO4 7Ω

Pin Configuration

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

VCC, IN_, COM_, NO_ to GND (Note 1)	0.3V to +6.0V
Closed Switch Continuous Current COM_, NO	±50mA
Peak Current COM_, NO_	
(pulsed at 1ms, 50% duty cycle)	±100mA
Peak Current COM_, NO_	
(pulsed at 1ms, 10% duty cycle)	±120mA

Continuous Power Dissipation ($T_A = +70$ °C)	
16-Pin Thin QFN (derate 20.8mW/°C above	+70°C)1667mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NO or COM exceeding GND are clamped by internal diodes. Signals on IN exceeding GND are clamped by an internal diode. Limit the forward-diode current to the maximum current rating.

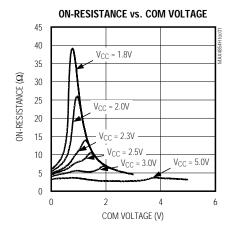
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

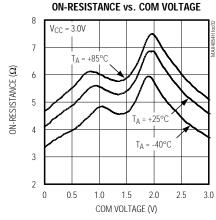
ELECTRICAL CHARACTERISTICS

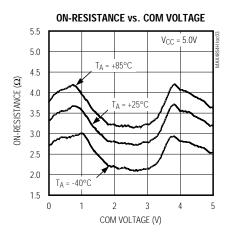
 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 2)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
Supply Voltage	Vcc			2.0		5.5	V
Supply Current	Icc	$V_{CC} = 5.5V$, $V_{IN} = 0V$ or V_{CC}			10	20	μΑ
ANALOG SWITCH							
Analog Signal Range	V _{NO_} , V _{COM_}			0		V _C C	V
On-Resistance	Ron	V _{CC} = 3V, I _{COM} = 10mA, V _{NO} = 0 to V _{CC}	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		7	9 10	Ω
On-Resistance Match Between Channels	ΔRON	V _{CC} = 3V, I _{COM} = 10mA,	T _A = +25°C		0.2	0.4	Ω
(Notes 3, 4)	2014	$V_{NO} = 1.5V$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			0.5	
On-Resistance Flatness	Delat	$V_{CC} = 3V$, $I_{COM} = 10mA$,	$T_A = +25^{\circ}C$		2.5	3.75	Ω
(Note 5)	RFLAT	V _{NO} _ = 1V, 2V, 3V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			4	52
NO_ Off-Leakage Current	loff	$V_{CC} = 5.5V, V_{NO} = 1V \text{ or}$	$T_A = +25^{\circ}C$	-2		+2	nA
TNO_ OII-Leakage Current	IOFF	$4.5V$, $V_{COM} = 4.5V$ or $1V$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-10		+10	ПА
COM On Lookage Current	Lave	$V_{CC} = 5.5V; V_{NO} = 1V, 4.5V,$	$T_A = +25^{\circ}C$	-2		+2	
COM_ On-Leakage Current	ION	or floating; V _{COM} = 1V, 4.5V, or floating	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-12.5		+12.5	nA
DYNAMIC CHARACTERIST	ics						
Signal Over-Rail to High-Z Switching Time		$V_{NO} = V_{CC}$ to ($V_{CC} + 0.5V$), V_{CC}	CC < 5V (Figure 1)		0.5	1	μs
High-Z to Low-Z Switching Time		$V_{NO_{-}} = (V_{CC} + 0.5V) \text{ to } V_{CC}, V_{CC}$	CC < 5V (Figure 1)		0.5	1	μs
Skew (Note 3)	tskew	$R_S = 39\Omega$, $C_L = 50pF$ (Figure 2)		0.15	1	ns
Propagation Delay (Note 3)	t _{PD}	$R_S = 39\Omega$, $C_L = 50pF$ (Figure 2)		0.9	2	ns
Turn-On Time	ton	V _{CC} = 3V, V _{NO} = 1.5V, R _L =			40	60	ns
	J.,	300Ω, C _L = 50 pF (Figure 1)	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			100	
Turn-Off Time	toff	V _{CC} = 3V, V _{NO} = 1.5V, R _L =			30	40	ns
		_	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			60	
Charge Injection	Q	$V_{COM} = 1.5V$, $R_S = 0\Omega$, $C_L = 1$	inf (Figure 3)		8		рС

ELECTRICAL CHARACTERISTICS (continued)

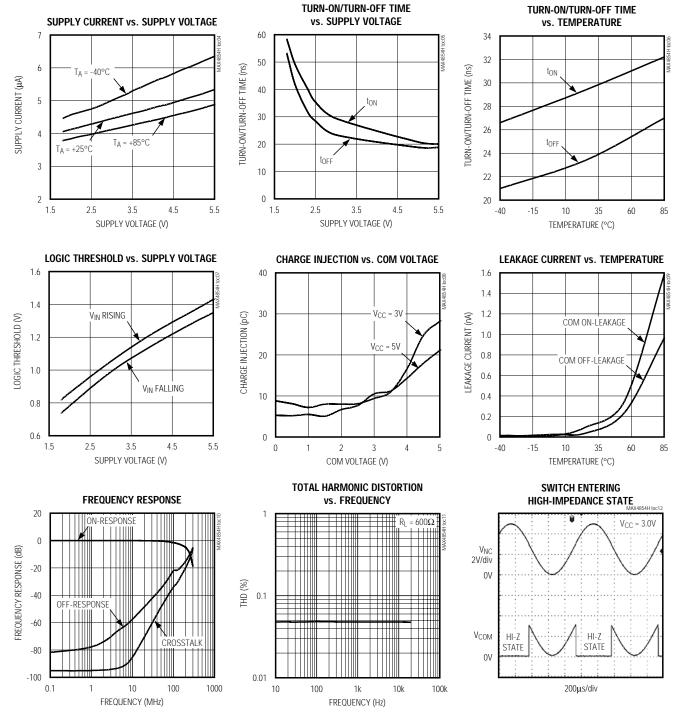

 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Note 2)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Off-Isolation (Note 6)	V _{ISO}	$f = 100kHz$, $V_{COM} = 1V_{RMS}$, $R_L = 50\Omega$, $C_L = 5pF$ (Figure 4)		-80		dB
Crosstalk	V _{CT}	$f = 1MHz$, $V_{COM} = 1V_{RMS}$, $R_L = 50\Omega$, $C_L = 5pF$ (Figure 4)		-95		dB
-3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$ (Figure 4)		150		MHz
Total Harmonic Distortion	THD	$f = 20$ Hz to 20 kHz, $V_{COM} = 1$ V + 2 V _{P-P} , $R_L = 600\Omega$		0.04		%
NO_ Off-Capacitance	Coff	f = 1MHz (Figure 5)		12		рF
COM On-Capacitance	Con	f = 1MHz (Figure 5)		27.5		pF
DIGITAL I/O (IN_)						
Input-Logic High Voltage	\/	$V_{CC} = 2V \text{ to } 3.6V$	1.4			V
Imput-Logic High voltage	V _{IH}	$V_{CC} = 3.6V \text{ to } 5.5V$	1.8			V
Input Logic Low Voltage	V/	$V_{CC} = 2V \text{ to } 3.6V$			0.5	V
Input-Logic Low Voltage	VIL	$V_{CC} = 3.6V \text{ to } 5.5V$			0.8	V
Input Leakage Current	I _{IN}	V _{IN} _ = 0 or 5.5V	-0.5		+0.5	μA


- **Note 2:** Specifications are 100% tested at $T_A = +85$ °C only, and guaranteed by design and characterization over the specified temperature range.
- Note 3: Guaranteed by design and characterization; not production tested.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 6: Off-Isolation = $20log_{10}$ (V_{COM} / V_{NO}), V_{COM} = output, V_{NO} = input to off switch.

_Typical Operating Characteristics

($V_{CC} = 3.0V$, $T_A = +25$ °C, unless otherwise noted.)



Typical Operating Characteristics (continued)

($V_{CC} = 3.0V$, $T_A = +25$ °C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	NO1	Normally Open Terminal for Analog Switch 1
2, 11	N.C.	No Connection. Internally not connected.
3	IN2	Digital Control Input for Analog Switch 2. A logic LOW on IN2 opens switch 2 and a logic HIGH on IN2 connects COM2 to NO2.
4	COM2	Common Terminal for Analog Switch 2
5	NO2	Normally Open Terminal for Analog Switch 2
6	GND	Ground
7	NO3	Normally Open Terminal for Analog Switch 3
8	COM3	Common Terminal for Analog Switch 3
9	IN3	Digital Control Input for Analog Switch 3. A logic LOW on IN3 opens switch 3 and a logic HIGH on IN3 connects COM3 to NO3.
10	NO4	Normally Open Terminal for Analog Switch 4
12	COM4	Common Terminal for Analog Switch 4
13	IN4	Digital Control Input for Analog Switch 4. A logic LOW on IN4 opens switch 4 and a logic HIGH on IN4 connects COM4 to NO4.
14	Vcc	Supply Voltage. Bypass V _{CC} to GND with a 0.01µF capacitor as close to the pin as possible.
15	IN1	Digital Control Input for Analog Switch 1. A logic LOW on IN1 opens switch 1 and a logic HIGH on IN1 connects COM1 to NO1.
16	COM1	Common Terminal for Analog Switch 1
_	EP	Exposed Paddle. Connect to PC board ground plane.

Detailed Description

The MAX4854H quad SPST switch has low on-resistance, operates from a +2V to +5.5V supply, and is fully specified for nominal 3.0V applications. The device features overvoltage protection by putting the switch into high-impedance mode when the switch input exceeds $V_{\rm CC}$.

This switch has low 27.5pF on-channel capacitance, which allows for 12Mbps switching of the data signals for USB 2.0 full speed/1.1 applications. The MAX4854H is designed to switch D+ and D- USB signals with a guaranteed skew of less than 1ns (see Figure 2) as measured from 50% of the input signal to 50% of the output signal.

_Applications Information Digital Control Inputs

The logic inputs (IN_) accept up to +5.5V even if the supply voltages are below this level. For example, with a +3.3V V_{CC} supply, IN_ can be driven low to GND and

high to +5.5V, allowing for mixing of logic levels in a system. Driving IN_ rail-to-rail minimizes power consumption. For a +2V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 1.8V (high).

Analog Signal Levels

The on-resistance of these switches changes very little for analog input signals across the entire supply voltage range (see the *Typical Operating Characteristics*). The switches are bidirectional, so the NO_ and COM_ pins can be either inputs or outputs.

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} before applying analog signals, especially if the analog signal is not current-limited.

Test Circuits/Timing Diagrams

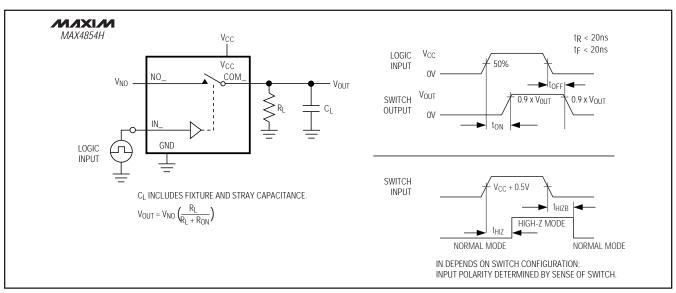


Figure 1. Switching Time

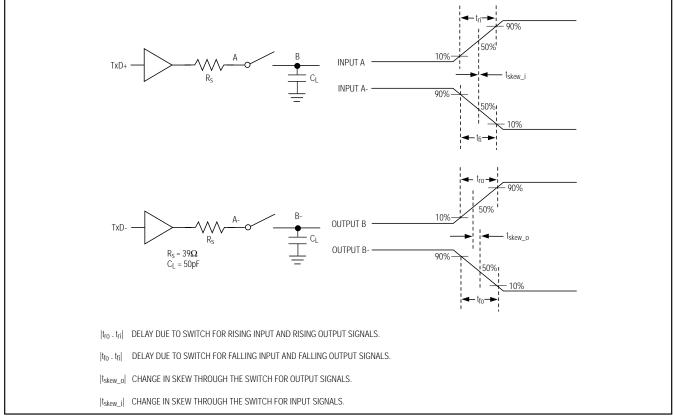


Figure 2. Output Signal Skew

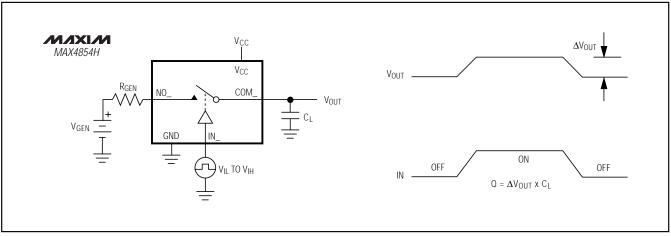


Figure 3. Charge Injection

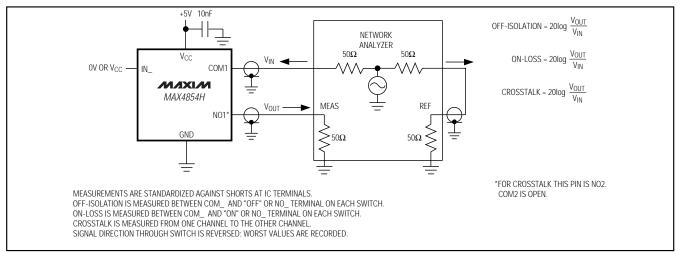


Figure 4. On-Loss, Off-Isolation, and Crosstalk

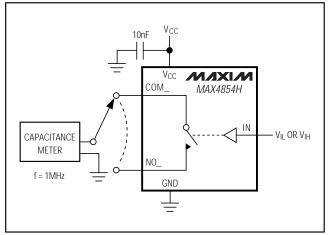
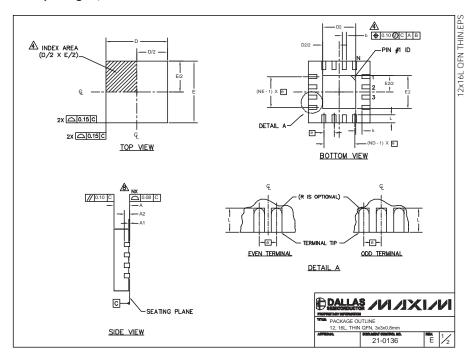


Figure 5. Channel Off-/On-Capacitance


Chip Information

TRANSISTOR COUNT: 735

PROCESS: CMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

D 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.35 0.3	PKG		12L 3x3			16L 3x3		1										
D 280 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10 3.10 3.90 3.00 3.10 3.90 3.00 3.10 3.90 3.00 3.10 3.90 3.00 3.10 3.90 3.00 3.10 3.90 3.00 3.10 3.90 3.00 3.10 3.90 3.00	REF.	MINL	NOM.	MAX.	MIN.	NOM.	MAX.	1			EXF	POSEI	D PAD	VARI	ATIO	NS		
D 2.89 (3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 2.80 3.00 3.10 3.10 3.80 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.1	Α	0.70	0.75	0.80	0.70	0.75	0.80	1	PKG.		D2			E2				DOWN
T1233-3 0,85 1.10 1.25 0.35 4.0 0.50	b	0.20	0.26	0.30	0.20	0.26	0.30	1	CODES	MIN.	NOM.	MAX	MIN.	NOM.	MAX.	PINID	JEDEC	ALLOWE
E & 0.50 BSC	D	2.90	3.00	3.10	2.90	3.00	3.10	1	T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	NO
L 0.45 0.55 0.65 0.65 0.30 0.40 0.50 N 12 18 ND 3 4 NE 3 4 A1 0 0.02 0.05 0 0.02 0.05 A2 0.20 REF 0.20 REF k 0.225 - 0.025 DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONISA ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINAL S. THE TOTAL NUMBER OF TERMINAL S. THE TOTAL NUMBER OF TERMINAL S. THE TOTAL NUMBER OF TERMINAL HI IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPO-912. DETALS OF TERMINAL HI IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL HI DENTIFIER WAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION S APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL ITP. NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUIG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220 REVISION C.	Е	2.80	3.00	3.10	2.90	3.00	3.10]	T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	YES
N		_		_	_		_]	T1833-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
ND 3 4 NE 3 4 A1 0 0.02 0.09 0 0.02 0.09 A2 0.20 REF 0 20 REF k 0.23 - 0.20 REF 0.20 REF k 0.23 - 0.20 REF 0.20 REF k 0.23 - 0.20 REF 0.20 REF k 0.25 - 0.25	_	0.45		0.65	0.30	41.10	0.50	1	T1833-2	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	YES
NE 3 4 A1 0 0.052 0.05 0 0.05 0.05 A2 0.20 PREF 0 20 REF k 0.25 0.28 DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONIS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINAL. SINCE ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINAL HIDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 DENTIFIER MAY BE EITHER A MOLD OR MARKED PEATURE. DIMENSION DA PPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL ITP. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPPLANARTY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220 REVISION C.	N		12			16		1	T1633F-3	0.65	0.80	0.96	0,65	0.80	0.95	0.225 x 45°	WEED-2	N/A
A1 0 0.02 0.03 0 0.02 0.05 A2 0.20 REF 0.20 REF k 0.25 - 0.028 SS: DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER ANG POTIONAL, BUT MUST BE LOCATED MARKED FEATURE. DIMENSION B APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP. NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220 REVISION C.		<u> </u>			_	_		1	T1633-4	0.95	1.1D	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
AZ 0.20 REF 0.20 REF k 0.23 - 0.20 REF k 0.25 - 0.25 - 0.25 - 0.25 - 0.25 DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONIS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL HIS IDENTIFIER AND TERMINAL HUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED PEATURE. DIMENSION 5 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL IT). NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220 REVISION C.		<u> </u>			<u> </u>			1										
S: DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINAL. NUMBERING CONVENTION SHALL CONFORM TO JESO 95-1 SPO-12. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION DA PPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPLANARTY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220 REVISION C.		_			_			1										
S: DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONIS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL HIDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL HIDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER AND PER PROPERTY OF THE PROPERTY OF THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIAMENED FEATURE. NO AND NE REFER TO THE NUMBER OF TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP. NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220 REVISION C.	_	_	_		_			1										
FROM TERMINAL TIP. NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220 REVISION C.	DIME ALL C	IMENS	IONS AF	RE IN MI	LLIMETE	ERS. AN												
DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220 REVISION C. DALLAS FINE PROFESSION SCHOOL TIME PACKAGE OUTLINE	DIME ALL D N IS T THE T JESD WITH MARK	IMENS THE TO TERMIN 95-1 SI N THE TED FE	IONS AF TAL NUI IAL #1 IE PP-012. ZONE IN ATURE.	RE IN MI MBER C DENTIFII DETAIL NDICATI	LLIMETE F TERM ER AND .S OF TE ED. THE	ERS. AND INALS. TERMIN ERMINAL TERMIN	GLES AR AL NUME .#1 IDEN IAL #1 IDI	E IN DEGR BERING CO TIFIER AR ENTIFIER	DNVENTION S E OPTIONAL MAY BE EITH	, BUT M IER A M	IUST BE	E LOCA R	ATED					
	DIME ALL D N IS 1 THE 1 JESD WITH MARK DIME	IMENS THE TO TERMIN 95-1 SI N THE TED FE	IONS AF TAL NUI IAL #1 IC PP-012. ZONE IN ATURE. b APPLII	RE IN MI MBER C DENTIFII DETAIL NDICATI	LLIMETE F TERM ER AND .S OF TE ED. THE	ERS. AND INALS. TERMIN ERMINAL TERMIN	GLES AR AL NUME .#1 IDEN IAL #1 IDI	E IN DEGR BERING CO TIFIER AR ENTIFIER	DNVENTION S E OPTIONAL MAY BE EITH	, BUT M IER A M	IUST BE	E LOCA R	ATED	n				
	DIME ALL D N IS 1 THE 1 JESD WITH MARK DIME FROM ND AI DEPC COPL	IMENS THE TO TERMIN 95-1 S N THE TED FE VISION 1 TERMIN ND NE TEN TO NE	IONS AF ITAL NUI IAL #1 IE PP-012. ZONE IN ATURE. b APPLII IINAL TIF REFER T TON IS F	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M C. TO THE POSSIBL	LLIMETE F TERM ER AND S OF TE ED. THE METALLI NUMBE LE IN A S THE EX	ERS. ANO INALS. TERMIN ERMINAL TERMIN ZED TER R OF TE SYMMET POSED I	GLES AR AL NUME #1 IDEN IAL #1 IDI MINAL A RMINALS RICAL FA HEAT SIN	E IN DEGR BERING CO TIFIER AR ENTIFIER ND IS MEA ON EACH SHION. IK SLUG A	REES. DIVENTION S E OPTIONAL MAY BE EITH ASURED BET	, BUT M IER A M WEEN (DE RES	IUST BE IOLD O 0.20 mn PECTI\	E LOCA R n AND (ATED	ENGEN	ETARY INF	OFMATION	VI /	1×
21-0136	DIME ALL C N IS 1 THE 1 JESD WITH MARK DIME FROM ND AI DEPC COPL	IMENS THE TO TERMIN 95-1 S N THE TED FE VISION 1 TERMIN ND NE TEN TO NE	IONS AF ITAL NUI IAL #1 IE PP-012. ZONE IN ATURE. b APPLII IINAL TIF REFER T TON IS F	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M C. TO THE POSSIBL	LLIMETE F TERM ER AND S OF TE ED. THE METALLI NUMBE LE IN A S THE EX	ERS. ANO INALS. TERMIN ERMINAL TERMIN ZED TER R OF TE SYMMET POSED I	GLES AR AL NUME #1 IDEN IAL #1 IDI MINAL A RMINALS RICAL FA HEAT SIN	E IN DEGR BERING CO TIFIER AR ENTIFIER ND IS MEA ON EACH SHION. IK SLUG A	REES. DIVENTION S E OPTIONAL MAY BE EITH ASURED BET	, BUT M IER A M WEEN (DE RES	IUST BE IOLD O 0.20 mn PECTI\	E LOCA R n AND (ATED	ENGEN	PACKA 12, 16L	ORMATION AGE OUTLINE ., THIN QFN, 3	3x3x0.8mm NT GONTROL NO.	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600