
High Speed

- 180 MHz Bandwidth (G = 1, -3 dB)
- 400 V/us Slew Rate
- 40-ns Settling Time (0.1%)
- High Output Drive, I_O = 115 mA (typ)
- Excellent Video Performance
 - 75 MHz 0.1 dB Bandwidth (G = 1)
 - 0.02% Differential Gain
 - 0.02° Differential Phase
- Very Low Distortion
 THD = -72 dBc at f = 1 MHz
- Wide Range of Power Supplies
 V_{CC} = ±5 V to ±15 V
- Available in Standard SOIC, MSOP PowerPAD[™], JG, or FK Package
- Evaluation Module Available

description

The THS4061 and THS4062 are generalpurpose, single/dual, high-speed voltage feedback amplifiers ideal for a wide range of applications including video, communication, and imaging. The devices offer very good ac performance with 180-MHz bandwidth, 400-V/µs slew rate, and 40-ns settling time (0.1%). The THS4061/2 are stable at all gains for both inverting and noninverting configurations. These amplifiers have a high output drive capability of 115 mA and draw only 7.8 mA supply current per channel. Excellent professional video results can be obtained with the low differential gain/phase errors of 0.02%/0.02° and wide 0.1 db flatness to 75 MHz. For applications requiring low distortion, the THS4061/2 is ideally suited with total harmonic distortion of -72 dBc at f = 1 MHz.

CAUTION: The THS4061 and THS4062 provide ESD protection circuitry. However, permanent damage can still occur if this device is subjected to high-energy electrostatic discharges. Proper ESD precautions are recommended to avoid any performance degradation or loss of functionality

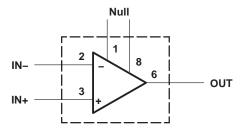
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

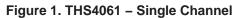
PowerPAD is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1998 – 2003, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003


	RELATED DEVICES
DEVICE	DESCRIPTION
THS4011/2	290-MHz Low Distortion High-Speed Amplifiers
THS4031/2	100-MHz Low Noise High Speed-Amplifiers
THS4061/2	180-MHz High-Speed Amplifiers


AVAILABLE OPTIONS

			PACKAGED	DEVICES	_		
T _A	NUMBER OF CHANNELS	PLASTIC SMALL OUTLINE [†] (D)	PLASTIC MSOP† (DGN)	CERAMIC DIP (JG)	CHIP CARRIER (FK)	MSOP SYMBOL	EVALUATION MODULES
0°C to	1	THS4061CD	THS4061CDGN	—	—	TIABS	THS4061EVM
70°C	2	THS4062CD	THS4062CDGN	—	—	TIABM	THS4062EVM
-40°C to	1	THS4061ID	THS4061IDGN	—	_	TIABT	—
85°C	2	THS4062ID	THS4062IDGN	—	_	TIABN	—
–55°C to 125°C	1	_	_	THS4061MJG	THS4061MFK	_	_

[†] The D and DGN packages are available taped and reeled. Add an R suffix to the device type (i.e., THS4061CDGNR).

functional block diagram

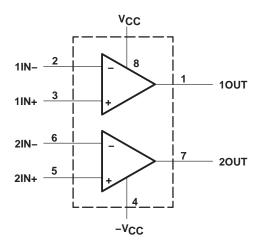


Figure 2. THS4062 – Dual Channel

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Input voltage, V _I Output current, I _O					
	C-suffix 0°C to 70°C I-suffix -40°C to 85°C M-suffix -55°C to 125°C				
Storage temperature, T _{stg} -65°C to 150° Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds, D and DGN package 300° Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds, JG package 300° Case temperature for 60 seconds, FK package 260°					

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	740 mW	6 mW/°C	475 mW	385 mW	—
DGN [‡]	2.14 W	17.1 mW/°C	1.37 W	1.11 W	—
JG	1057 mW	8.4 mW/°C	627 mW	546 mW	210 mW
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW

[‡] The DGN package incorporates a PowerPAD on the underside of the device. This acts as a heatsink and must be connected to a thermal dissipation plane for proper power dissipation. Failure to do so can result in exceeding the maximum specified junction temperature, which could permanently damage the device.

recommended operating conditions

		MIN	NOM MAX	UNIT
	Dual supply	±4.5	±16	
Supply voltage, V _{CC} + and V _{CC} -	Single supply	9	32	V
	C-suffix	0	70	
Operating free-air temperature, T _A	I-suffix	-40	85	°C
	M-suffix	-55	125	

SLOS234E – DECEMBER 1998 – REVISED DECEMBER 2003

electrical characteristics at T_A = 25°C, V_{CC} = ± 15 V, R_L = 150 Ω (unless otherwise noted)

dynamic performance

	PARAMETER	TEST CONDITIONS [†]			THS4061C/I, THS4062C/I			
						MAX		
		$V_{CC} = \pm 5 V$	Gain = 1		180		MHz	
	Dynamic performance small-signal bandwidth (-3 dB)	$V_{CC} = \pm 15 V$			50		N 41 1-	
BW		$V_{CC} = \pm 5 V$	Gain = -1		50		MHz	
	Bandwidth for 0.1 dB flatness	$V_{CC} = \pm 15 V$			75		N 41 1-	
		$V_{CC} = \pm 5 V$	Gain = 1		20		MHz	
0.0		$V_{CC} = \pm 15 V$			400		· V/μs	
SR	Slew rate	$V_{CC} = \pm 5 V$	Gain = -1		350			
		$V_{CC} = \pm 15 \text{ V}, 5 \text{-V step } (0 \text{ V to } 5 \text{ V})$			40			
	Settling time to 0.1%	$V_{CC} = \pm 5 \text{ V}, \qquad V_{O} = -2.5 \text{ V to } 2.5 \text{ V},$	Gain = -1		40		ns	
t _s		$V_{CC} = \pm 15 \text{ V}, 5\text{-V step } (0 \text{ V to 5 V})$			140		ns	
	Settling time to 0.01%	$V_{CC} = \pm 5 \text{ V}, \qquad V_{O} = -2.5 \text{ V to } 2.5 \text{ V},$	Gain = -1		150			

[†] Full range = 0° C to 70° C for C suffix and -40° C to 85° C for I suffix

noise/distortion performance

	PARAMETER	TEST CONDITIONS [†]			THS4061C/I, THS4062C/I			UNIT
							MAX	
THD	Total harmonic distortion	f = 1 MHz				-72		dBc
Vn	Input voltage noise	f = 10 kHz,	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$			14.5		nV/√Hz
In	Input current noise	f = 10 kHz,	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$			1.6		pA/√Hz
	D			V _{CC} = ±15 V		0.02 %		
	Differential gain error	Gain = 2,	NTSC, 40 IRE modulation			0.02 %		
	D."			V _{CC} = ±15 V		0.02°		
	Differential phase error	Gain = 2,	NTSC, 40 IRE modulation	Nodulation $V_{CC} = \pm 5 V$		0.06°		
	Channel-to-channel crosstalk (THS4062 only)	V _{CC} = ±5 V c	or ±15 V, f = 1 MHz			65		dB

[†] Full range = 0°C to 70°C for C suffix and –40°C to 85°C for I suffix

dc performance

	PARAMETER	TEST CONDITIONS [†]	TEST CONDITIONS [†]			THS4061C/I, THS4062C/I		
				MIN	TYP	MAX		
			T _A = 25°C	5	15			
	On an Ison and a	$V_{CC} = \pm 15 \text{ V}, V_O = \pm 10 \text{ V}, R_L = 1 \text{ k}\Omega$	T _A = full range	4			V/mV	
	Open loop gain		T _A = 25°C	2.5	8			
		$V_{CC} = \pm 5 \text{ V}, V_O = \pm 2.5 \text{ V}, R_L = 1 \text{ k}\Omega$	T _A = full range	2			V/mV	
	Input offset voltage	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$			2.5	8	mV	
Vos	Offset drift	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$T_A = $ full range		15		μV/°C	
I _{IB}	Input bias current	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	T _A = full range		3	6	μA	
IOS	Input offset current	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	T _A = full range		75	250	nA	
	Offset current drift	T _A = full range			0.3		nA/∘C	

[†] Full range = 0° C to 70° C for C suffix and -40° C to 85° C for I suffix

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

electrical characteristics at T_A = 25°C, V_{CC} = \pm 15 V, R_L = 150 Ω (unless otherwise noted) (continued)

input characteristics

	PARAMETER		TEST CONDITIONS [†]			THS4061C/I, THS4062C/I		
					MIN	TYP	MAX	
		$V_{CC} = \pm 15 V$			±13.8	±14.1		
VICR	Common-mode input voltage range	$V_{CC} = \pm 5 V$			±3.8	±4.3		V
		$V_{CC} = \pm 15 V,$	$V_{ICR} = \pm 12 V$	T _A = full range	70	110		dB
CMRR	Common mode rejection ratio	$V_{CC} = \pm 5 V$,	VICR = ±2.5 V		70	95		
RI	Input resistance					1		MΩ
Ci	Input capacitance					2		pF

[†] Full range = 0°C to 70°C for C suffix and -40°C to 85°C for I suffix

output characteristics

PARAMETER		TEST CONDITIONS [†]			THS4061C/I, THS4062C/I		
				MIN	TYP	MAX	
VO Output voltage swing	$V_{CC} = \pm 15 V$	$R_L = 250 \ \Omega$	±11.5	±12.5			
		$V_{CC} = \pm 5 V$	RL = 150 Ω	±3.2	±3.5		V
	Output voltage swing	$V_{CC} = \pm 15 V$	R _L = 1 kΩ	±13	±13.5		v
		$V_{CC} = \pm 5 V$		±3.5	±3.7		
		$V_{CC} = \pm 15 V$	_	80	115		
10	Output current	$V_{CC} = \pm 5 V$	R _L = 20 Ω	50	75		mA
ISC	Short-circuit current	$V_{CC} = \pm 15 V$			150		mA
RO	Output resistance	Open loop			12		Ω

[†] Full range = 0°C to 70°C for C suffix and -40° C to 85°C for I suffix

power supply

	PARAMETER	TEST CONDITIONS [†]			THS4061C/I, THS4062C/I			
				MIN	TYP	MAX		
		Dual supply		±4.5		±16.5	M	
VCC	Supply voltage operating range	Single supply	9		33	V		
		$V_{CC} = \pm 15 V$	T _A = full range		7.8	10.5	mA	
lcc	Quiescent current (per amplifier)	$V_{CC} = \pm 5 V$			7.3	10		
DODD	Device events releasing ratio		$T_A = 25^{\circ}C$	70	78		dB	
PSRR	Power supply rejection ratio	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	T _A = full range	68				

[†] Full range = 0°C to 70°C for C suffix and -40°C to 85°C for I suffix

SLOS234E – DECEMBER 1998 – REVISED DECEMBER 2003

electrical characteristics at T_A = 25°C, V_{CC} = ± 15 V, R_L = 150 Ω (unless otherwise noted)

dynamic performance

			TEST CONDITIONS [†]		TF				
	PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT	
	Unity-gain bandwidth	Closed loop,	$R_L = 1 k\Omega$	$V_{CC} = \pm 15 V$	*140	180		MHz	
BW		$V_{CC} = \pm 15 V$		Coin 1		180		N 41 I	
	Dynamic performance small-signal	$V_{CC} = \pm 5 V$		Gain = 1		180		MHz	
	bandwidth (-3 dB)	$V_{CC} = \pm 15 V$				50			
		$V_{CC} = \pm 5 V$		Gain = –1		50		MHz	
		$V_{CC} = \pm 15 V$				75			
	Bandwidth for 0.1 dB flatness	$V_{CC} = \pm 5 V$		Gain = 1		20		MHz	
SR	Slew rate	$V_{CC} = \pm 15 V$	$R_L = 1 k\Omega$		*400	500		V/µs	
		$V_{CC} = \pm 15 V,$	5-V step (0 V to 5 V)			40		ns	
	Settling time to 0.1%	$V_{CC} = \pm 5 V,$	$V_{O} = -2.5 \text{ V to } 2.5 \text{ V},$	Gain = -1		40			
t _s		$V_{CC} = \pm 15 V,$	5-V step (0 V to 5 V)	Coin 1		140			
	Settling time to 0.01%	$V_{CC} = \pm 5 V,$	$V_{O} = -2.5 \text{ V to } 2.5 \text{ V},$	Gain = -1		150		ns	

[†] Full range = -55° C to 125° C for M suffix

*This parameter is not tested.

noise/distortion performance

				TEST CONDITIONS [†]			THS4061M		
	PARAMETER		TEST CONDITIONS		MIN TYP MA			UNIT	
THD	Total harmonic distortion	f = 1 MHz	f = 1 MHz					dBc	
Vn	Input voltage noise	f = 10 kHz,	0 kHz, $V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$					nV/√Hz	
۱ _n	Input current noise	f = 10 kHz,	kHz, $V_{CC} = \pm 5 V \text{ or } \pm 15 V$					pA/√Hz	
	Differential agin error			$V_{CC} = \pm 15 V$		0.02		0/	
	Differential gain error	Gain = 2,	NTSC, 40 IRE Modulation	$V_{CC} = \pm 5 V$		0.02		%	
	Differential phase error	Gain = 2,	NTSC, 40 IRE Modulation	$V_{CC} = \pm 15 V$		0.02°			
	Differential priase error	Gain = 2,	NTSC, 40 IKE MODULATION	$V_{CC} = \pm 5 V$		0.06°			

[†] Full range = -55° C to 125° C for M suffix

dc performance

	PARAMETER	TERT	ONDITIONS [†]		THS4061M MIN TYP MAX			UNIT
	PARAMETER	TEST CO	JNDITIONS					
		$V_{CC} = \pm 15 \text{ V}, V_{O} = \pm 10 \text{ V},$	$R_L = 1 k\Omega$	T (1)	5	9		V/mV
	Open loop gain	$V_{CC} = \pm 5 \text{ V}, \qquad V_O = \pm 2.5 \text{ V}$	5 V, $R_L = 1 k\Omega$ $T_A = full range$		2.5	6		
	long to offer a true lange			$T_A = 25^{\circ}C$		2.5	8	mV
VIO	Input offset voltage	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$R_L = 1 k\Omega$	$T_A = full range$			9	mV
	Offset drift	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$R_L = 1 \ k\Omega$	$T_A = full range$		15		μV/°C
I _{IB}	Input bias current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$R_L = 1 \ k\Omega$	$T_A = full range$		3	6	μΑ
IIO	Input offset current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$R_L = 1 \ k\Omega$	$T_A = full range$		75	250	nA
	Offset current drift	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$R_L = 1 \ k\Omega$	T _A = full range		0.3		nA/∘C

[†] Full range = -55° C to 125° C for M suffix

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

electrical characteristics at T_A = full range, V_{CC} = \pm 15 V, R_L = 1 k Ω (unless otherwise noted) (continued)

input characteristics

DADAMETER	TEAT CONDITIONAT	THS4061M		Λ	
PARAMETER		MIN TYP MAX			UNIT
	$V_{CC} = \pm 15 V$	±13.8	±14.1		Ň
Common-mode input voltage range	$V_{CC} = \pm 5 V$	±3.8	±4.3		V
	$V_{CC} = \pm 15 \text{ V}, \qquad V_{ICR} = \pm 12 \text{ V}$	70	86		-10
Common mode rejection ratio	$V_{CC} = \pm 5 \text{ V}, \qquad V_{ICR} = \pm 2.5 \text{ V}$	80	90		dB
Input resistance			1		MΩ
Input capacitance			2		pF
	1	Common-mode input voltage range $V_{CC} = \pm 15 \text{ V}$ Common mode rejection ratio $V_{CC} = \pm 5 \text{ V}$ Voc = $\pm 15 \text{ V}$, $V_{ICR} = \pm 12 \text{ V}$ Voc = $\pm 5 \text{ V}$, $V_{ICR} = \pm 2.5 \text{ V}$ Input resistance	PARAMETERTEST CONDITIONS†Common-mode input voltage range $V_{CC} = \pm 15 V$ ± 13.8 $V_{CC} = \pm 5 V$ ± 3.8 $V_{CC} = \pm 5 V$ ± 3.8 $V_{CC} = \pm 15 V$, $V_{ICR} = \pm 12 V$ 70 $V_{CC} = \pm 5 V$, $V_{ICR} = \pm 2.5 V$ 80Input resistance $V_{CC} = \pm 5 V$, $V_{ICR} = \pm 2.5 V$	PARAMETERTEST CONDITIONS†MINTYPCommon-mode input voltage range $V_{CC} = \pm 15 V$ $\pm 13.8 \pm 14.1$ $V_{CC} = \pm 5 V$ $\pm 3.8 \pm 4.3$ Common mode rejection ratio $V_{CC} = \pm 15 V$, $V_{ICR} = \pm 12 V$ 70Number Note:	PARAMETERTEST CONDITIONSTMINTYPMAXCommon-mode input voltage range $V_{CC} = \pm 15 V$ ± 13.8 ± 14.1 $V_{CC} = \pm 5 V$ ± 3.8 ± 4.3 Common mode rejection ratio $V_{CC} = \pm 15 V$, $V_{ICR} = \pm 12 V$ 7086 $V_{CC} = \pm 5 V$, $V_{ICR} = \pm 2.5 V$ 8090Input resistance1

[†] Full range = -55° C to 125° C for M suffix

output characteristics

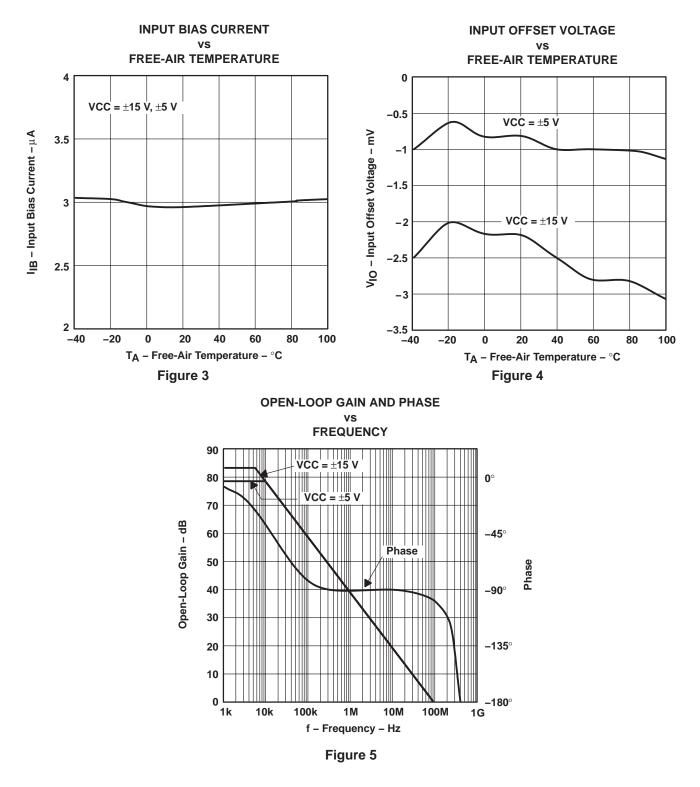
PARAMETER			•	THS4061M			
		TEST CONDITIONS		MIN	TYP	MAX	UNIT
		$V_{CC} = \pm 15 V$	R _L = 250 Ω	±12	±13.1		V
		$V_{CC} = \pm 5 V$	RL = 150 Ω	±3.2	±3.5		V
VO	Output voltage swing	$V_{CC} = \pm 15 V$		±13	±13.5		
		$V_{CC} = \pm 5 V$	$R_L = 1 k\Omega$	±3.5	±3.7		V
		$V_{CC} = \pm 15 V$	D 00 0	70	115		
10	Output current	$V_{CC} = \pm 5 V$	$R_L = 20 \Omega$	50	75		mA
ISC	Short-circuit current	$V_{CC} = \pm 15 V$	$T_A = 25^{\circ}C$		150		mA
RO	Output resistance	Open loop			12		Ω

[†]Full range = -55° C to 125° C for M suffix

power supply

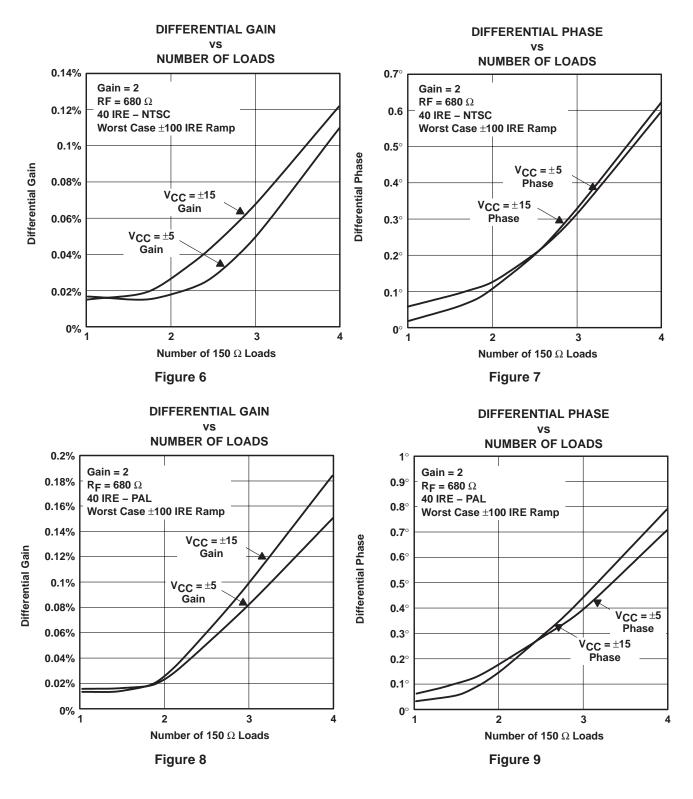
PARAMETER				THS4061M				
		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
N		Dual supply		±4.5		±16.5	- V	
VCC	Supply voltage operating range	Single supply		9	9		V	
		$V_{CC} = \pm 15 V$	T. 0500		7.8	9		
I.		$V_{CC} = \pm 5 V$	T _A = 25°C		7.3	8.5		
ICC	Quiescent current	$V_{CC} = \pm 15 V$	T (1)			11	mA	
		$V_{CC} = \pm 5 V$	T _A = full range			10.5		
PSRR	Bower supply rejection ratio		$T_A = 25^{\circ}C$	76	80		dP	
	Power supply rejection ratio	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$T_A = full range$	74	78	33 9 8.5 11	dB	

[†] Full range = -55° C to 125° C for M suffix

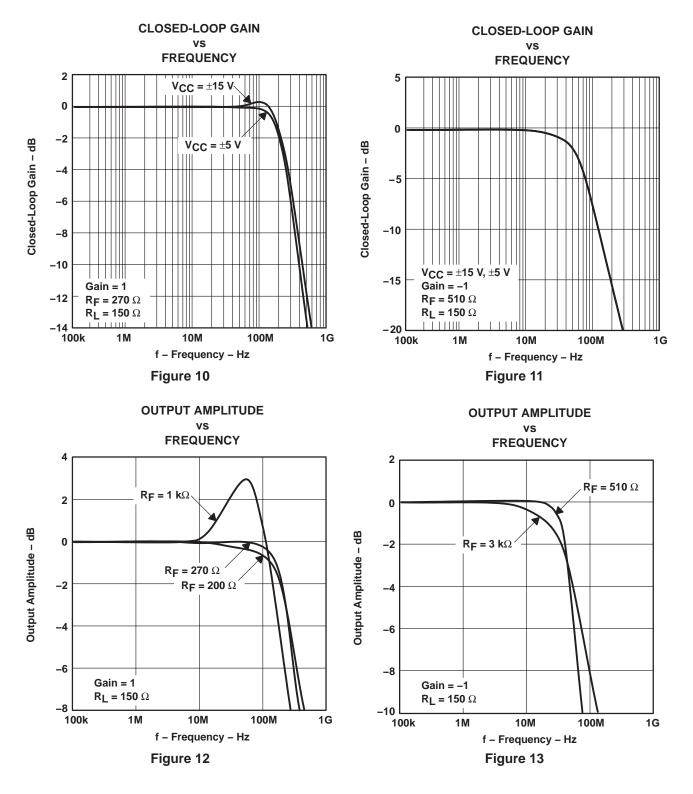


SLOS234E – DECEMBER 1998 – REVISED DECEMBER 2003

			FIGURE
IIB	Input bias current	vs Free-air temperature	3
VIO	Input offset voltage	vs Free-air temperature	4
	Open-loop gain	vs Frequency	5
	Phase	vs Frequency	5
	Differential gain	vs Number of loads	6, 8
	Differential phase	vs Number of loads	7, 9
	Closed-loop gain	vs Frequency	10, 11
	Output amplitude	vs Frequency	12, 13
CMRR	Common-mode rejection ratio	vs Frequency	14
		vs Frequency	15
PSRR	Power supply rejection ratio	vs Free-air temperature	16
VO(PP)	Output voltage swing	vs Supply voltage	17
ICC	Supply current	vs Free-air temperature	18
Env	Noise spectral density	vs Frequency	19
THD	Total harmonic distortion	vs Frequency	20, 21
	Crosstalk	vs Frequency	22, 23

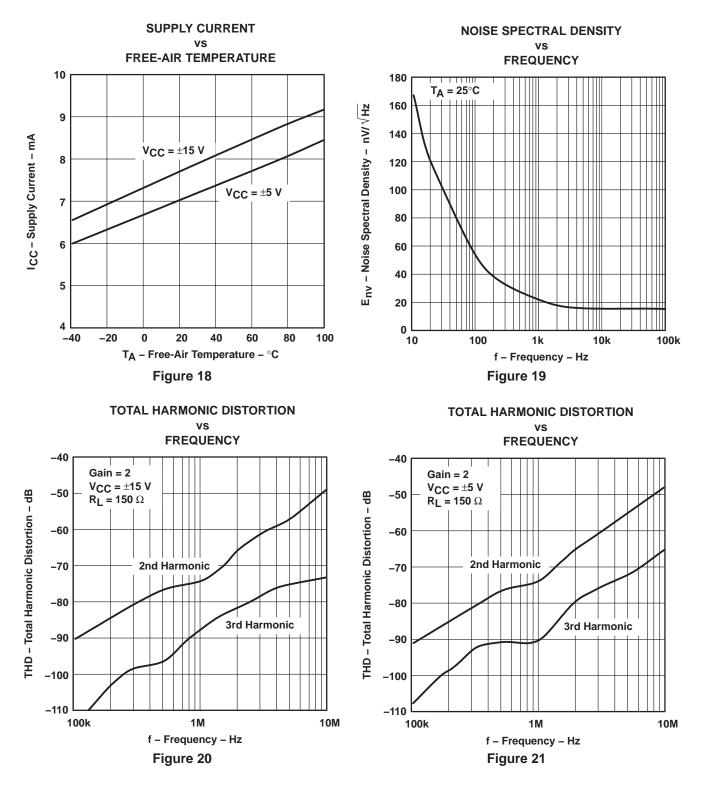


SLOS234E – DECEMBER 1998 – REVISED DECEMBER 2003



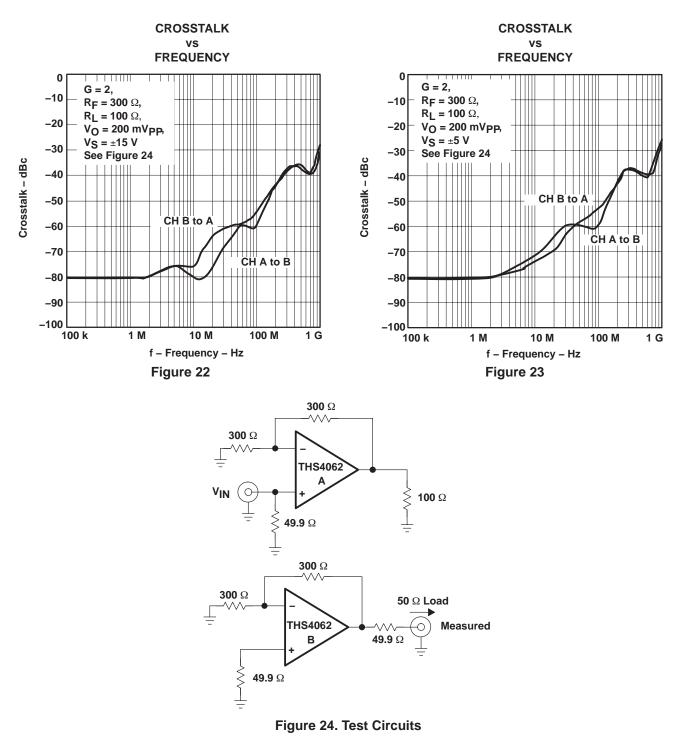
SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003



SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

COMMON-MODE REJECTION RATIO POWER SUPPLY REJECTION RATIO vs vs FREQUENCY FREQUENCY 120 -80 V_{CC} = ±15 V, ±5 V CMRR – Common-Mode Rejection Ratio – dB PSRR – Power Supply Rejection Ratio – dB -70 100 -60 80 -50 60 -40 -30 40 -20 20 -10 V_{CC} = ±15 V, ±5 V 0 0 100k 1M 10M 100M 10k 10k 100k 1M 1k 10M 100M f - Frequency - Hz f - Frequency - Hz Figure 14 Figure 15 POWER SUPPLY REJECTION RATIO **OUTPUT VOLTAGE SWING** vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 90 30 PSRR – Power Supply Rejection Ratio – dB 88 25 VO(PP) - Output Voltage Swing - V 86 $R_L = 1 k\Omega$ $V_{CC} = -15 V$ 84 20 **R**_L = 150 Ω 82 15 80 V_{CC} = 15 V 78 10 76 5 74 72 0 100 -40 -20 0 20 40 60 80 ±**4** ±6 ±8 ±10 ±12 ±14 ±16 T_A – Free-Air Temperature – °C V_{CC} – Supply Voltage – V Figure 16 Figure 17



SLOS234E – DECEMBER 1998 – REVISED DECEMBER 2003

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

APPLICATION INFORMATION

theory of operation

The THS406x is a high speed, operational amplifier configured in a voltage feedback architecture. It is built using a 30-V, dielectrically isolated, complementary bipolar process with NPN and PNP transistors possessing f_{TS} of several GHz. This results in an exceptionally high performance amplifier that has a wide bandwidth, high slew rate, fast settling time, and low distortion. A simplified schematic is shown in Figure 25.

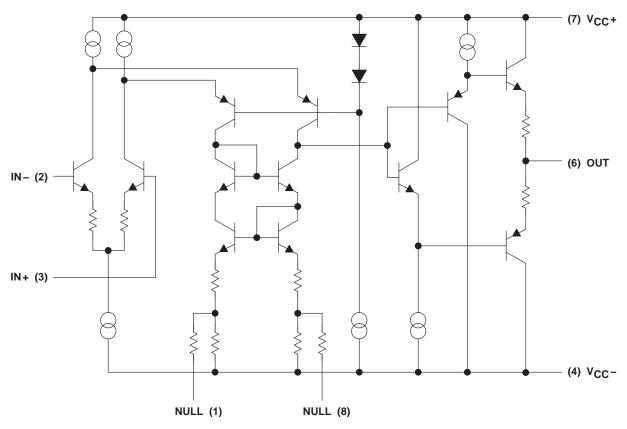


Figure 25. THS4061 Simplified Schematic

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

APPLICATION INFORMATION

offset nulling

The THS4061 has very low input offset voltage for a high-speed amplifier. However, if additional correction is required, an offset nulling function has been provided. By placing a potentiometer between terminals 1 and 8 and tying the wiper to the negative supply, the input offset can be adjusted. This is shown in Figure 26.

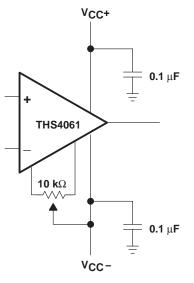


Figure 26. Offset Nulling Schematic

optimizing unity gain response

Internal frequency compensation of the THS406x was selected to provide very wideband performance yet still maintain stability when operated in a noninverting unity gain configuration. When amplifiers are compensated in this manner there is usually peaking in the closed loop response and some ringing in the step response for very fast input edges, depending upon the application. This is because a minimum phase margin is maintained for the G=+1 configuration. For optimum settling time and minimum ringing, a feedback resistor of 270 Ω should be used as shown in Figure 27. Additional capacitance can also be used in parallel with the feedback resistance if even finer optimization is required.

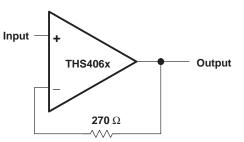


Figure 27. Noninverting, Unity Gain Schematic

SLOS234E – DECEMBER 1998 – REVISED DECEMBER 2003

APPLICATION INFORMATION

driving a capacitive load

Driving capacitive loads with high performance amplifiers is not a problem as long as certain precautions are taken. The first is to realize that the THS406x has been internally compensated to maximize its bandwidth and slew rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series with the output of the amplifier, as shown in Figure 28. A minimum value of 20 Ω should work well for most applications. For example, in 75- Ω transmission systems, setting the series resistor value to 75 Ω both isolates any capacitance loading and provides the proper line impedance matching at the source end.

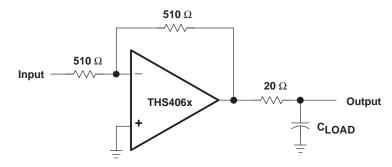


Figure 28. Driving a Capacitive Load

circuit layout considerations

In order to achieve the levels of high frequency performance of the THS406x, it is essential that proper printed-circuit board high frequency design techniques be followed. A general set of guidelines is given below. In addition, a THS406x evaluation board is available to use as a guide for layout or for evaluating the device performance.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distances increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets Sockets are not recommended for high-speed operational amplifiers. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation.
- Short trace runs/compact part placements Optimum high frequency performance is achieved when stray
 series inductance has been minimized. To realize this, the circuit layout should be made as compact as
 possible thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting
 input of the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance
 at the input of the amplifier.

SLOS234E - DECEMBER 1998 - REVISED DECEMBER 2003

APPLICATION INFORMATION

circuit layout considerations (continued)

 Surface-mount passive components – Using surface-mount passive components is recommended for high-frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible.

evaluation board

An evaluation board is available for the THS4061 (literature number SLOP226) and THS4062 (literaure number SLOP235). This board has been configured for very low parasitic capacitance in order to realize the full performance of the amplifier. A schematic of the evaluation board is shown in Figure 29. The circuitry has been designed so that the amplifier may be used in either an inverting or noninverting configuration. To order the evaluation board contact your local TI sales office or distributor. For more detailed information, refer to the *THS4061 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU038) or the *THS4062 EVM User's Manual* (literature number SLOU040)

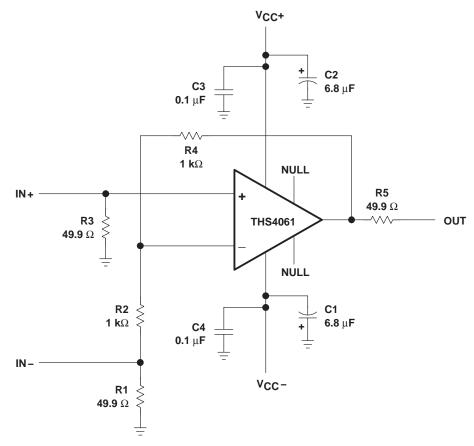


Figure 29. THS4061 Evaluation Board Schematic

TEXAS RUMENTS www.ti.com

18-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9960101Q2A	ACTIVE	LCCC	FK	20	1	None	POST-PLATE	Level-NC-NC-NC
5962-9960101QPA	ACTIVE	CDIP	JG	8	1	None	A42 SNPB	Level-NC-NC-NC
THS4061CD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
THS4061CDGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4061CDGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4061CDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
THS4061ID	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
THS4061IDGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4061IDGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4061IDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
THS4061MFKB	ACTIVE	LCCC	FK	20	1	None	POST-PLATE	Level-NC-NC-NC
THS4061MJG	ACTIVE	CDIP	JG	8	1	None	A42 SNPB	Level-NC-NC-NC
THS4061MJGB	ACTIVE	CDIP	JG	8	1	None	A42 SNPB	Level-NC-NC-NC
THS4062CD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
THS4062CDGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4062CDGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4062CDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
THS4062ID	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
THS4062IDGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4062IDGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4062IDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM

 (1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in the device. a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

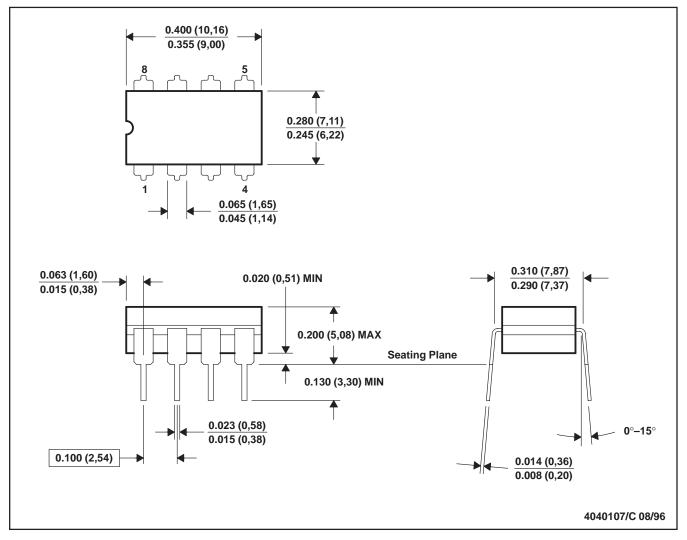
None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

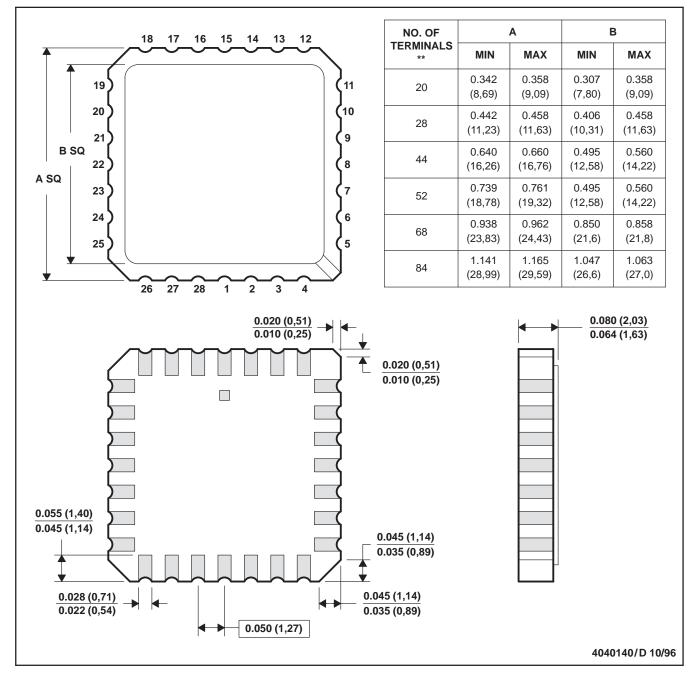
MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

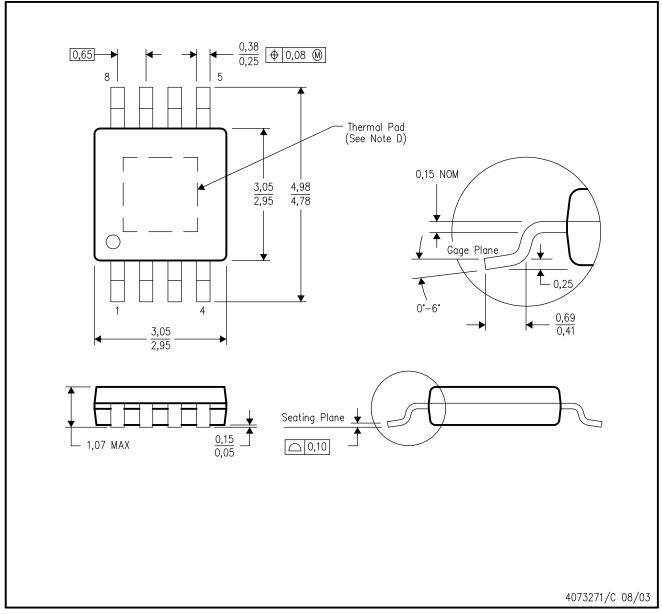


MLCC006B - OCTOBER 1996

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

PowerPAD[™] PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. Falls within JEDEC MO-187

PowerPAD is a trademark of Texas Instruments.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated