- Qualification in Accordance With AEC-Q100 \dagger
- Qualified for Automotive Applications
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=\mathbf{0}$)
- Buffered Inputs
- Typical Propagation Delay 7 ns at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Fanout (Over Temperature Range)
- Standard Outputs ... 10 LSTTL Loads
- Bus Driver Outputs ... 15 LSTTL Loads
- Extended Temperature Performance of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
\dagger Contact factory for details. Q100 qualification data available on request.
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction, Compared to LSTTL Logic ICs
- 2-V to 6-V VCc Operation
- High Noise Immunity N_{IL} or $\mathrm{N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- CMOS Input Compatibility, $\mathrm{I}_{\mathrm{I}} \leq 1 \mu \mathrm{~A}$ at V_{OL}, V_{OH}

description/ordering information

The CD74HC08 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates, with the low power consumption of standard CMOS integrated circuits. The device can drive 10 LSTTL loads.

ORDERING INFORMATION

| TA $_{\mathbf{A}}$ | | PACKAGE \ddagger | | $\begin{array}{c}\text { ORDERABLE } \\ \text { PART NUMBER }\end{array}$ |
| :---: | :--- | :--- | :--- | :--- | \(\left.\begin{array}{c}TOP-SIDE

MARKING\end{array}\right]\)
\ddagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each gate)

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	
H	H	H
L	X	L
X	L	L

logic diagram (positive logic)

QUADRUPLE 2-INPUT POSITIVE-AND GATES

SCLS512 - JULY 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		2	5	6	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			v
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			0.5	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			1.8	
V_{1}	Input voltage		0		V_{CC}	V
V_{O}	Output voltage		0		V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000	
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500	ns
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40		125	${ }^{\circ} \mathrm{C}$

[^0]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\underset{(\mathrm{mA})}{\mathrm{lo}}$	$V_{C C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		CD74HC08-Q1		UNIT	
			MIN		TYP MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	CMOS loads		-0.02	2 V	1.9		1.9		V
			-0.02	4.5 V	4.4		4.4			
			-0.02	6 V	5.9		5.9			
		TTL loads	-4	4.5 V	3.98		3.7			
			-5.2	6 V	5.48		5.2			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	CMOS loads	0.02	2 V		0.1		0.1	V	
			0.02	4.5 V		0.1		0.1		
			0.02	6 V		0.1		0.1		
		TTL loads	4	4.5 V		0.26		0.4		
			5.2	6 V		0.26		0.4		
1	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			6 V		± 0.1		± 1	$\mu \mathrm{A}$	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND		0	6 V		2		40	$\mu \mathrm{A}$	
C_{i}						10		10	pF	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CONDITIONS	VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		CD74HC08-Q1	UNIT
					MIN	TYP MAX	MIN MAX	
${ }^{\text {tpd }}$	A or B	Y	$C_{L}=50 \mathrm{pF}$	2 V		90	135	ns
				4.5 V		18	27	
				6 V		15	23	
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5 V		7		
t_{t}		Y	$C_{L}=50 \mathrm{pF}$	2 V		75	110	ns
				4.5 V		15	22	
				6 V		13	19	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

| PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {pd }} \quad$ Power dissipation capacitance per gate (see Note 4) | No load | 37 | pF |

NOTE 4: $\quad \mathrm{C}_{\text {pd }}$ is used to determine the dynamic power consumption, per gate.
$P_{D}=V_{C C}{ }^{2} f_{f}\left(C_{p d}+C_{L}\right)$
$f_{l}=$ input frequency
$C_{L}=$ output load capacitance
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status $^{(1)}$	Package Type	Package Drawing	Pins Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$	
CD74HC08QM96Q1	ACTIVE	SOIC	D	14	2500	None	CU NIPDAU	Level-1-235C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
None: Not yet available Lead (Pb-Free).
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

