

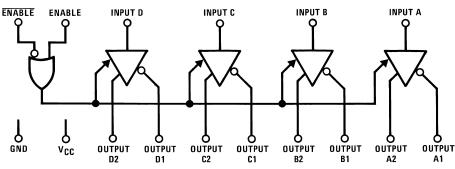
SNOSAM5B-AUGUST 2005-REVISED APRIL 2013

DS26LS31MQML Quad High Speed Differential Line Driver

Check for Samples: DS26LS31MQML

FEATURES

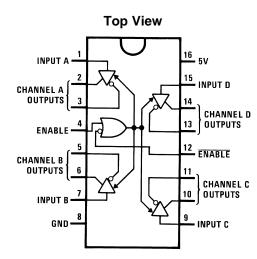
- Operation from Single 5V Supply
- Outputs Won't Load Line When V_{CC} = 0V
- Four Line Drivers in One Package for Maximum Package Density
- Output Short-Circuit Protection
- Complementary Outputs
- Meets the Requirements of EIA Standard RS-422
- Pin Compatible with AM26LS31
- Glitch Free Power Up/Down


DESCRIPTION

The DS26LS31MQML is a quad differential line driver designed for digital data transmission over balanced lines. The DS26LS31MQML meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

The circuit provides an enable and disable function common to all four drivers. The DS26LS31MQML features TRI-STATE outputs and logically ANDed complementary outputs. The inputs are all LS compatible and are all one unit load.

The DS26LS31 features a power up/down protection circuit which keeps the output in a high impedance state (TRI-STATE) during power up or down preventing erroneous glitches on the transmission lines.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. SNOSAM5B-AUGUST 2005-REVISED APRIL 2013

www.ti.com

Figure 1. CDIP Package See Package Numbers NAJ0020A, NFE0016A, NAD0016A

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage	7V
Input Voltage	7V
Output Voltage	5.5V
Output Voltage (Power OFF)	-0.25 to 6V
Maximum Power Dissipation at 25°C ⁽²⁾	
NFE0016A Package	1400 mW
NAJ0020A Package	1600 mW
NAD0016A Package	850 mW
Junction Temperature (T _J)	+150°C
Thermal Resistance, Junction-to-Ambient θ_{JA}	
NFE0016A Package	94°C/W derate above +25°C at 10.6 mW/°C
NAJ0020A Package	83°C/W derate above +25°C at 12 mW/°C
NAD0016A Package	163°C/W derate above +25°C at 6.1 mW/°C
Thermal Resistance, Junction-to-Case θ_{JC}	
NFE0016A Package	16°C/W
NAJ0020A Package	19°C/W
NAD0016A Package	14°C/W
ESD Tolerance	2500V

(1) "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be specified. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

(2) Derate CDIP = 11.5 mW/°C, LCCC = 13mW/°C, CLGA = 7.4mW/°C above 25°C.

Recommended Operating Conditions

Supply Voltage, V _{CC}	4.5 V to 5.5 V
Temperature, T _A	−55°C to +125°C

SNOSAM5B-AUGUST 2005-REVISED APRIL 2013

www.ti.com

Radiation Features

DS26LS31MEFQML	300 Krads (Si)
DS26LS31MJFQML	300 Krads (Si)
DS26LS31MJFQMLV	300 Krads (Si)
DS26LS31MWFQML	300 Krads (Si)
DS26LS31MWFQMLV	300 Krads (Si)

Quality Conformance Inspection

MIL-STD-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

DS26LS31M - SMD, QMLV & RH Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. +V = 5V, $V_{CM} = 0V$.⁽¹⁾

Parameter		Test Conditions		Min	Мах	Unit	Sub- groups
V _{IH}	Logical "1" Input Voltage	V _{CC} = 4.5V	$\mathop{\rm See}_{(3)} \mathop{\rm and}^{(2)}$	2		V	1, 2, 3
V _{IL}	Logical "0" Input Voltage	V _{CC} = 5.5V	$See^{(2)}_{(3)}$ and		.8	V	1, 2, 3
V _{OH}	Logical "1" Output Voltage	V _{CC} = 4.5V, I _{OH} = -20mA	See ⁽³⁾	2.5		V	1, 2, 3
V _{OL}	Logical "0" Output Voltage	$V_{CC} = 4.5V, I_{OL} = 20mA$	See ⁽³⁾		.5	V	1, 2, 3
I _{IH}	Logical "1" Input Current	V _{CC} = 5.5V, V _{IN} = 2.7V	See ⁽³⁾	-2.0	20	uA	1, 2, 3
IIL	Logical "0" Input Current	$V_{CC} = 5.5V, V_{IN} = .4V$	See ⁽³⁾	100	-360	uA	1, 2, 3
I _I	Input Reverse Current	V _{CC} = 5.5V, V _{IN} = 7V	See ⁽³⁾	01	.1	mA	1, 2, 3
		$V_{CC} = 5.5V, V_{O} = .5V$	See ⁽³⁾		-20	uA	1, 2, 3
I _O	TRI-STATE Output Current	$V_{CC} = 5.5V, V_{O} = 2.5V$	See ⁽³⁾		20	uA	1, 2, 3
V _{IC}	Input Clamp Voltage	V _{CC} = 4.5V, I _{IN} = -18mA	See ⁽³⁾		-1.5	V	1, 2, 3
I _{OS}	Output Short Circuit Current	V _{CC} = 5.5V	See ⁽³⁾	-30	-150	mA	1, 2, 3
I _{CC}	Power Supply Current	V_{CC} = 5.5V, All Outputs Disabled or Active	See ⁽³⁾		80	mA	1, 2, 3

(1) Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are ensured only for the conditions as specified in MIL-STD 883, Method 1019, Condition A.

(2) Parameter tested go-no-go only.

(3) Subgroups 1, 2 and 9, 10: Power dissipation must be externally controlled at elevated temperatures.

TRUMENTS

EXAS

DS26LS31M - SMD, QMLV and RH Electrical Characteristics AC Parameters - Propagation Delay Time

The following conditions apply, unless otherwise specified. $V_{CC} = 5V$, $V_{IN} = 1.3V$ to $V_O = 1.3V$, V (pulse) = 0 to 3V.⁽¹⁾

	Parameter	Test Conditions	Notes	Min	Мах	Unit	Sub- groups
t	Input to Output	C _L = 30 pF	See ⁽²⁾		20	ns	9
t _{PLH}		θ[= 30 βi	See		30	ns	10, 11
+	Input to Output C _L = 30 pF See	See ⁽²⁾		20	ns	9	
t _{PHL}		C _L = 30 μr	See		30	ns	10, 11
		C 30 mF	See ⁽²⁾		6	ns	9
t _{Skew}	Output to Output	C _L = 30 pF	See		9	ns	10, 11
			See ⁽²⁾		35	ns	9
		S2 Open, Enable, $C_L = 10 \text{ pF}$			53	ns	10, 11
t _{PLZ}		0 (2)		35	ns	9	
		S2 Open, Enable, $C_L = 10 \text{ pF}$	See ⁽²⁾		53	ns	10, 11
			a (2)		30	ns	9
		S1 Open, Enable, $C_L = 10 \text{ pF}$	See ⁽²⁾		45	ns	10, 11
t _{PHZ}	Enable to Output		a (2)		30	ns	9
		S1 Open, Enable, CL = 10 pF	See ⁽²⁾		45	ns	10, 11
			a (2)		45	ns	9
		S2 Open, Enable, $C_L = 30 \text{ pF}$	See ⁽²⁾		68	ns	10, 11
t _{PZL}	Enable to Output		- (2)		45	ns	9
		S2 Open, $\overline{\text{Enable}}$, $C_{L} = 30 \text{ pF}$	See ⁽²⁾		68	ns	10, 11
			- (2)		40	ns	9
		S1 Open, Enable, $C_L = 30 \text{ pF}$	See ⁽²⁾		60	ns	10, 11
t _{PZH}	Enable to Output		(0)		40	ns	9
		S1 Open, Enable, $C_L = 30 \text{ pF}$	See ⁽²⁾		60	ns	10, 11

(1) Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are ensured only for the conditions as specified in MIL-STD 883, Method 1019, Condition A.

(2) Subgroups 1, 2 and 9, 10: Power dissipation must be externally controlled at elevated temperatures.

DS26LS31M - SMD, QMLV and RH Electrical Characteristics DC Parameters - Drift Values

The following conditions apply, unless otherwise specified. Delta calculations performed on QMLV only devices after burn-in and at Group B5.

	Parameter	Test Conditions	Notes	Min	Max	Unit	Sub- groups
V _{OL}	Output Low Voltage	$V_{CC} = 4.5, I_{OL} = 20 \text{ mA}$	See ⁽¹⁾	-50	50	mV	1
V _{OH}	Output High Voltage	V _{CC} = 4.5, I _{OH} = -20 mA	See ⁽¹⁾	-250	250	mV	1
I _{CC}	Power Supply Current	V_{CC} = 5.5, All outputs disabled or active	See ⁽¹⁾	-8	8	mA	1

(1) Subgroups 1, 2 and 9, 10: Power dissipation must be externally controlled at elevated temperatures.

DS26LS31M - 883 Electrical Characteristics DC Parameters

Parameter		Test Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IH}	Logical "1" Input Voltage		$\operatorname{See}_{(2)}^{(1)}$ and	2		V	1, 2, 3
V _{IL}	Logical "0" Input Voltage		$\operatorname{See}_{(2)}^{(1)}$ and		.8	V	1, 2, 3
V _{OH}	Logical "1" Output Voltage	$V_{CC} = 4.5V, I_{OH} = -20mA$	See ⁽²⁾	2.5		V	1, 2, 3

(1) Parameter tested go-no-go only.

(2) Subgroups 1, 2 and 9, 10: Power dissipation must be externally controlled at elevated temperatures.

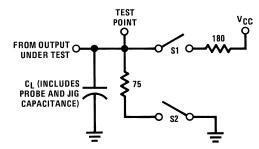
SNOSAM5B-AUGUST 2005-REVISED APRIL 2013

www.ti.com

DS26LS31M - 883 Electrical Characteristics DC Parameters (c	continued)
---	------------

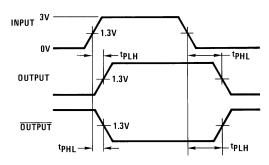
Parameter		Test Conditions	Notes	Min	Мах	Unit	Sub- groups
V _{OL}	Logical "0" Output Voltage	$V_{CC} = 4.5V, I_{OL} = 20mA$	See ⁽²⁾		.5	V	1, 2, 3
I _{IH}	Logical "1" Input Current	$V_{CC} = 5.5 V, \ V_{IN} = 2.7 V$	See ⁽²⁾		20	uA	1, 2, 3
IIL	Logical "0" Input Current	$V_{CC} = 5.5V, V_{IN} = .4V$	See ⁽²⁾		-200	uA	1, 2, 3
I _I	Input Reverse Current	$V_{CC} = 5.5V, V_{IN} = 7V$	See ⁽²⁾		.1	mA	1, 2, 3
		$V_{CC} = 5.5V, V_{O} = .5V$	See ⁽²⁾		-20	uA	1, 2, 3
I _O	TRI-STATE Output Current	$V_{CC} = 5.5V, V_{O} = 2.5V$	See ⁽²⁾		20	uA	1, 2, 3
V _{IC}	Input Clamp Voltage	$V_{CC} = 4.5V, I_{IN} = -18mA$	See ⁽²⁾		-1.5	V	1, 2, 3
I _{OS} (min)	Output Short Circuit Current	$V_{CC} = 5.5V$	See ⁽²⁾	-30		mA	1, 2, 3
I _{OS} (max)	Output Short Circuit Current	V _{CC} = 5.5V	See ⁽²⁾		-150	mA	1, 2, 3
I _{CC}	Power Supply Current	V_{CC} = 5.5V, All Outputs Disabled or Active	See ⁽²⁾		60	mA	1, 2, 3

DS26LS31M - 883 Electrical Characteristics AC Parameters - Propagation Delay Time


The following conditions apply, unless otherwise specified. V_{CC} = 5V, C_L = 50pF or equivalent impedance provided by diode load.

	Parameter	Test Conditions	Notes	Min	Мах	Unit	Sub- groups
+	Input to Output		$\underline{\qquad} See^{(1)}_{(2)} and$		15	ns	9
t _{PLH}	Input to Output		(2)		30	ns	10, 11.
+	Input to Output		See ⁽¹⁾ and		15	ns	9
t _{PHL}	Input to Output		(2)		30	ns	10, 11.
	Outrast to Outrast		See ⁽¹⁾ and		6	ns	9
t _{Skew}	Output to Output		(2)		9	ns	10, 11.
			See ⁽¹⁾ and		35	ns	9
	Fachle in Output	S2 Open, Enable	(2)	53	53	ns	10, 11.
t _{PLZ}	Enable to Output	See ⁽¹⁾ and	35	ns	9		
		S2 Open, /Enable	(2)		53	ns	10, 11.
		Of Oreas Frickle	See ⁽¹⁾ and		25	ns	9
	Fachle in Output	S1 Open, Enable	(2)		45	ns	10, 11.
t _{PHZ}	Enable to Output	Of Oreas (Eachla	See ⁽¹⁾ and		25	ns	9
		S1 Open, /Enable	(2)		45	ns	10, 11.
			See ⁽¹⁾ and		30	ns	9
		S2 Open, Enable	(2)		68	ns	10, 11.
t _{PZL}	Enable to Output		See ⁽¹⁾ and		30	ns	9
		S2 Open, /Enable	(2)		68	ns	10, 11.
			See ⁽¹⁾ and		30	ns	9
		S1 Open, Enable	(2)		60	ns	10, 11.
t _{PZH}	Enable to Output		See ⁽¹⁾ and		30	ns	9
		S1 Open, /Enable	$\operatorname{See}_{(2)}^{(1)}$ and		60	ns	10, 11.

Subgroups 1, 2 and 9, 10: Power dissipation must be externally controlled at elevated temperatures.
Subgroup 10 and 11 specified but not tested.


SNOSAM5B-AUGUST 2005-REVISED APRIL 2013

AC TEST CIRCUIT AND SWITCHING TIME WAVEFORMS

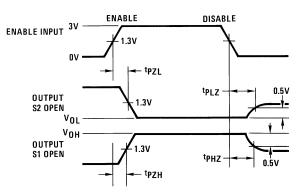
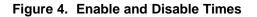
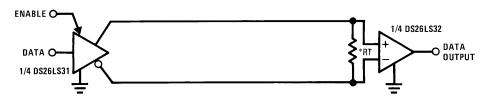

S1 and S2 of load circuit are closed except where shown.

Figure 2. AC Test Circuit



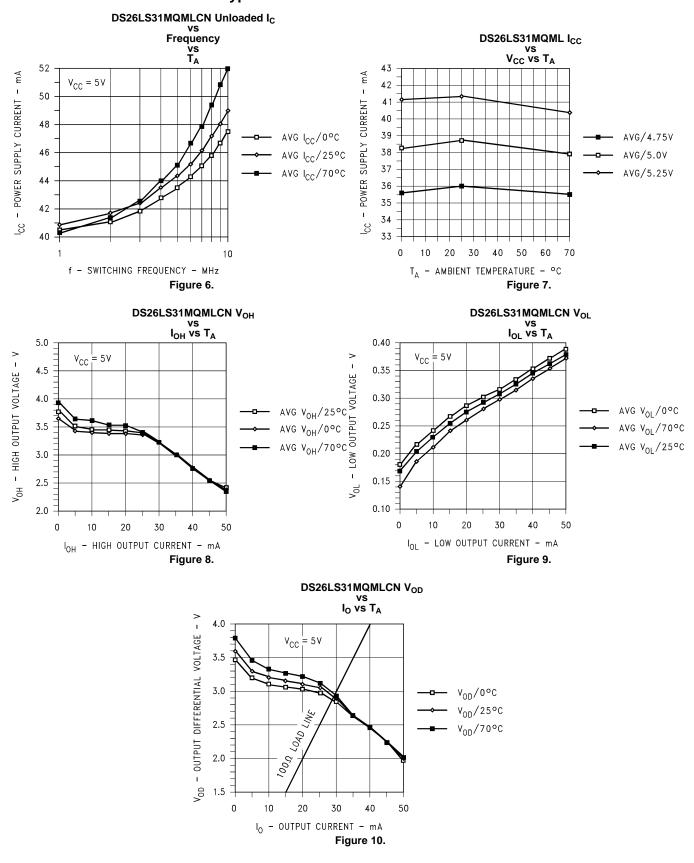
 $f = 1 \text{ MHz}, t_r \le 15 \text{ ns}, t_f \le 6 \text{ ns}$

Figure 3. Propagation Delays



f = 1 MHz, t_r ≤ 15 ns, t_f ≤ 6 ns

TYPICAL APPLICATIONS


 R_T is optional although highly recommended to reduce reflection.

6

Typical Performance Characteristics

DS26LS31MQML

SNOSAM5B-AUGUST 2005-REVISED APRIL 2013

www.ti.com

NSTRUMENTS

Texas

REVISION HISTORY

Date Released	Revision	Section	Originator	Changes
8/04/05	A	New Release, Corporate format Ordering Info. Table, Absolute Ratings, Maximum Operating Conditions, New Radiation Section. Typos in QMLV & RH, 883 AC Electrical Characteristics Parameters Column	R. Malone	2 MDS data sheets converted into a Corp. data sheet format. Following MDS data sheets will be Archived MDDS26LS31M-X-RH, Rev.2A0, MNDS26LS31M-X, Rev. 0A0
3/01/06	A1		R. Malone	Added: Juction temp., Thermal Resistance θ_{JA} and θ_{JC} . Added a Radiation Section. Changed: Maximum Operating Conditions to Recommended Operating Conditions, Enable and Disable Time to Enable to Output. Revision A will be archived.
4/15/2013	В		TIS	Changed layout of National Data Sheet to TI format

Copyright © 2005–2013, Texas Instruments Incorporated

15-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•		•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
5962-7802301VEA	ACTIVE	CDIP	NFE	16	25	TBD	Call TI	Call TI	-55 to 125	DS26LS31MJ-QMLV 5962-7802301VEA Q	Samples
AM26LS31MW/883	ACTIVE	CFP	NAD	16	19	TBD	Call TI	Call TI	-55 to 125	DS26LS31MW /883 Q ACO /883 Q >T	Samples
DS26LS31ME-SMD	ACTIVE	LCCC	NAJ	20	50	TBD	Call TI	Call TI	-55 to 125	DS26LS31ME -SMD Q 5962-78023 01Q2A ACO 01Q2A >T	Samples
DS26LS31MJ-QMLV	ACTIVE	CDIP	NFE	16	25	TBD	Call TI	Call TI	-55 to 125	DS26LS31MJ-QMLV 5962-7802301VEA Q	Samples
DS26LS31MJ-SMD	ACTIVE	CDIP	NFE	16	25	TBD	Call TI	Call TI	-55 to 125	DS26LS31MJ-SMD 5962-7802301MEA Q	Samples
DS26LS31MJ/883	ACTIVE	CDIP	NFE	16	25	TBD	Call TI	Call TI	-55 to 125	DS26LS31MJ/883 Q	Samples
DS26LS31MW/883	ACTIVE	CFP	NAD	16	19	TBD	Call TI	Call TI	-55 to 125	DS26LS31MW /883 Q ACO /883 Q >T	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

PACKAGE OPTION ADDENDUM

15-Apr-2013

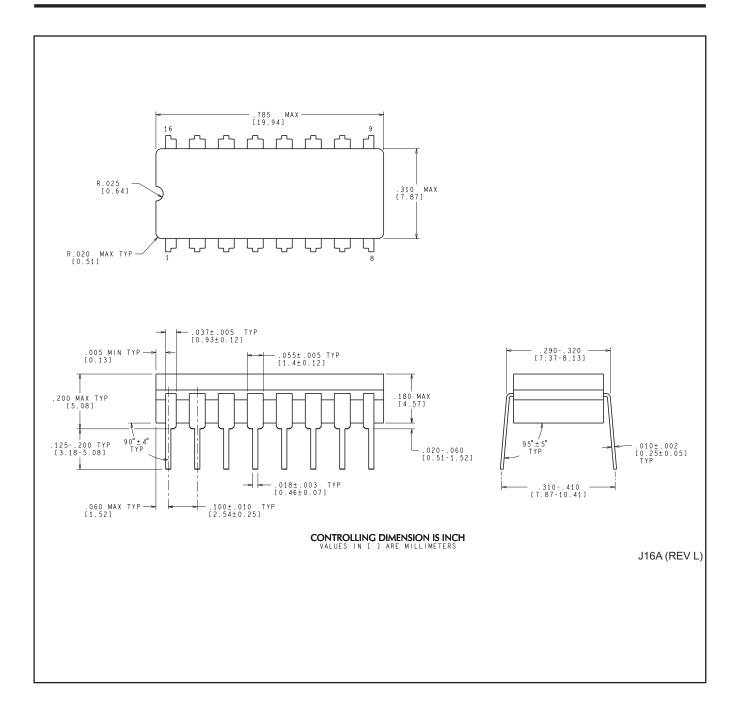
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

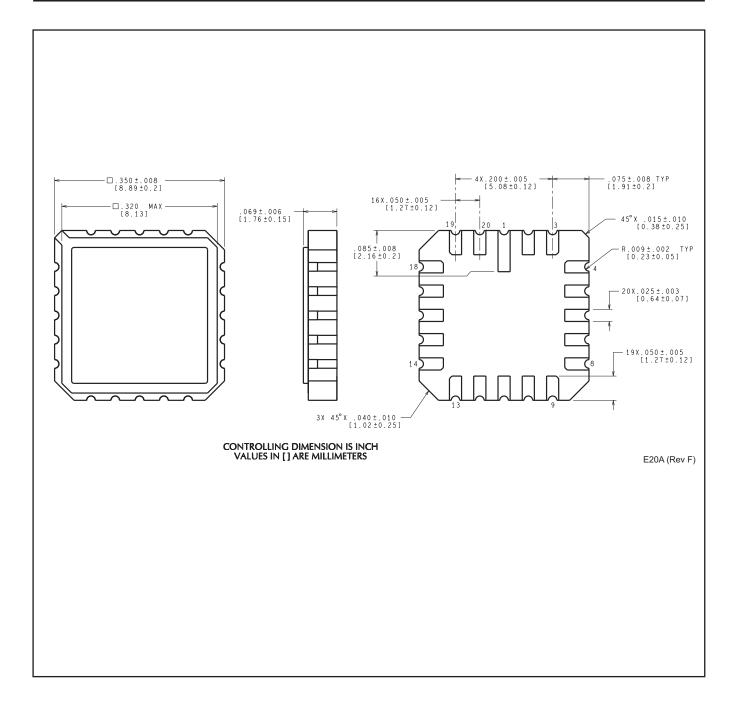
OTHER QUALIFIED VERSIONS OF DS26LS31MQML, DS26LS31MQML-SP :

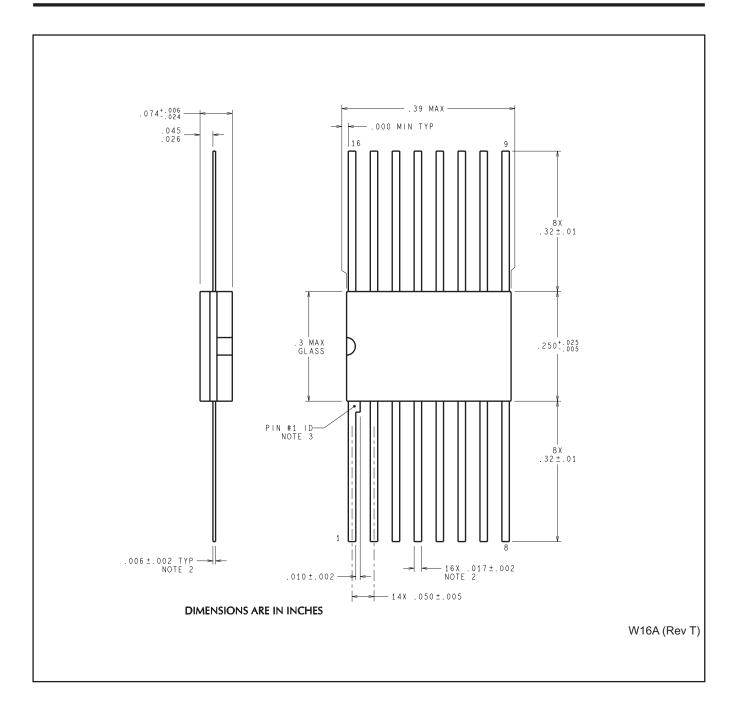

- Military: DS26LS31MQML
- Space: DS26LS31MQML-SP

NOTE: Qualified Version Definitions:

- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

MECHANICAL DATA


NFE0016A



MECHANICAL DATA

NAJ0020A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated