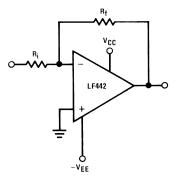


LF442

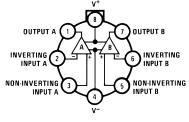
# LF442 Dual Low Power JFET Input Operational Amplifier

Check for Samples: LF442

## FEATURES

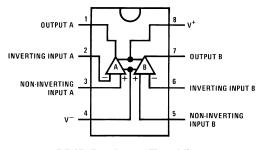

- 1/10 Supply Current of a LM1458: 400 μA (max)
- Low Input Bias Current: 50 pA (max)
- Low Input Offset Voltage: 1 mV (max)
- Low Input Offset Voltage Drift: 10 μV/°C (max)
- High Gain Bandwidth: 1 MHz
- High Slew Rate: 1 V/µs
- Low Noise Voltage for Low Power: 35 nV/<del>/Hz</del>
- Low Input Noise Current: 0.01 pA/\/Hz
- High Input Impedance: 10<sup>12</sup>Ω
- High Gain  $V_0 = \pm 10V$ ,  $R_L = 10k$ : 50k (min)

## DESCRIPTION


The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while greatly improving the DC characteristics of the LM1458. The amplifiers have the same bandwidth, slew rate, and gain (10 k $\Omega$  load) as the LM1458 and only draw one tenth the supply current of the LM1458. In addition the well matched high voltage JFET input devices of the LF442 reduce the input bias and offset currents by a factor of 10,000 over the LM1458. A combination of careful layout design and internal trimming ensures very low input offset voltage and voltage drift. The LF442 also has a very low equivalent input noise voltage for a low power amplifier.

The LF442 is pin compatible with the LM1458 allowing an immediate 10 times reduction in power drain in many applications. The LF442 should be used where low power dissipation and good electrical characteristics are the major considerations.

## **Typical Connection**




## **Connection Diagrams**



Pin 4 connected to case

#### TO Package Top View Package Number LMC0008C



PDIP Package Top View Package Number P0008E

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

www.ti.com



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### ABSOLUTE MAXIMUM RATINGS<sup>(1)(2)</sup>

|                                              | LF442A     | LF442      |
|----------------------------------------------|------------|------------|
| Supply Voltage                               | ±22V       | ±18V       |
| Differential Input Voltage                   | ±38V       | ±30V       |
| Input Voltage Range <sup>(3)</sup>           | ±19V       | ±15V       |
| Output Short Circuit Duration <sup>(4)</sup> | Continuous | Continuous |

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.

(2) Refer to RETS442X for LF442MH military specifications.

(3) Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

(4) Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.

#### ABSOLUTE MAXIMUM RATINGS<sup>(1)(2)</sup>

|                             |                    | LMC0008C Package            | P0008E Package              |  |
|-----------------------------|--------------------|-----------------------------|-----------------------------|--|
| T <sub>j</sub> max          |                    | 150°C                       | 115°C                       |  |
| θ <sub>JA</sub> (Typical)   | See <sup>(3)</sup> | 65°C/W                      | 114°C/W                     |  |
|                             | See <sup>(4)</sup> | 165°C/W                     | 152°C/W                     |  |
| θ <sub>JC</sub> (Typical)   |                    | 21°C/W                      |                             |  |
| Operating Temperature Range |                    | See <sup>(5)(4)</sup>       | See <sup>(5)(4)</sup>       |  |
| Storage Temperature Range   |                    | -65°C≤T <sub>A</sub> ≤150°C | −65°C≤T <sub>A</sub> ≤150°C |  |
| Lead Temperature (Soldering | , 10 sec.)         | 260°C                       | 260°C                       |  |
| ESD Tolerance               |                    | Rating to be                | determined                  |  |

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.

(2) Refer to RETS442X for LF442MH military specifications.

(3) The value given is in 400 linear feet/min air flow.

(4) The value given is in static air.

(5) These devices are available in both the commercial temperature range 0°C ≤ T<sub>A</sub> ≤ 70°C and the military temperature range −55°C ≤ T<sub>A</sub> ≤ 125°C. The temperature range is designated by the position just before the package type in the device number. A "C" indicates the commercial temperature range and an "M" indicates the military temperature range. The military temperature range is available in "H" package only.

#### SNOSC03E - APRIL 1999-REVISED OCTOBER 2013

#### DC Electrical Characteristics<sup>(1)(2)</sup>

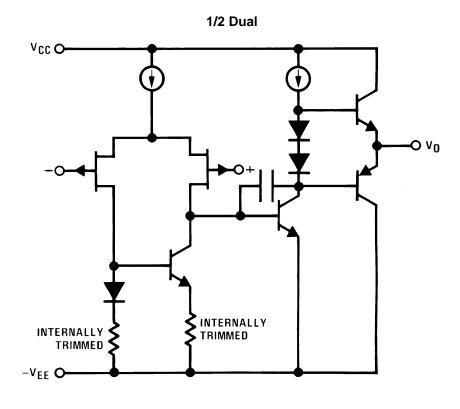
| 0                                    | Demonster                             | 0                                                                    | LF442A                 |                  |     | LF442 |                  |     |       |       |
|--------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------|------------------|-----|-------|------------------|-----|-------|-------|
| Symbol                               | Parameter                             | Cond                                                                 | Min                    | Тур              | Max | Min   | Тур              | Max | Units |       |
| V <sub>OS</sub>                      | Input Offset Voltage                  | R <sub>S</sub> = 10 kΩ, T <sub>A</sub> = 25°C                        |                        |                  | 0.5 | 1.0   |                  | 1.0 | 5.0   | mV    |
|                                      |                                       | Over Temperature                                                     | Over Temperature       |                  |     |       |                  |     | 7.5   | mV    |
| $\Delta V_{OS} / \Delta T$           | Average TC of Input Offset<br>Voltage | R <sub>S</sub> = 10 kΩ                                               |                        |                  | 7   | 10    |                  | 7   |       | µV/°C |
| I <sub>OS</sub> Input Offset Current |                                       | $V_{\rm S} = \pm 15 V^{(1)(3)}$                                      | T <sub>j</sub> = 25°C  |                  | 5   | 25    |                  | 5   | 50    | pА    |
|                                      |                                       |                                                                      | T <sub>j</sub> = 70°C  |                  |     | 1.5   |                  |     | 1.5   | nA    |
|                                      |                                       |                                                                      | T <sub>j</sub> = 125°C |                  |     | 10    |                  |     |       | nA    |
| I <sub>B</sub> Inp                   | Input Bias Current                    | $V_{\rm S} = \pm 15 V^{(1)(3)}$                                      | T <sub>j</sub> = 25°C  |                  | 10  | 50    |                  | 10  | 100   | pА    |
|                                      |                                       |                                                                      | T <sub>i</sub> = 70°C  |                  |     | 3     |                  |     | 3     | nA    |
|                                      |                                       |                                                                      | T <sub>i</sub> = 125°C |                  |     | 20    |                  |     |       | nA    |
| R <sub>IN</sub>                      | Input Resistance                      | $T_j = 25^{\circ}C$                                                  |                        | 10 <sup>12</sup> |     |       | 10 <sup>12</sup> |     | Ω     |       |
|                                      | Large Signal Voltage Gain             | $V_{S} = \pm 15V, V_{O} = \pm R_{L} = 10 \text{ k}\Omega, T_{A} = 2$ | 50                     | 200              |     | 25    | 200              |     | V/mV  |       |
|                                      |                                       | Over Temperature                                                     | 25                     | 200              |     | 15    | 200              |     | V/mV  |       |
| Vo                                   | Output Voltage Swing                  | $V_{\rm S} = \pm 15 V, R_{\rm L} = 10$                               | ) kΩ                   | ±12              | ±13 |       | ±12              | ±13 |       | V     |
| V <sub>CM</sub>                      | Input Common-Mode                     |                                                                      |                        | ±16              | +18 |       | ±11              | +14 |       | V     |
|                                      | Voltage Range                         | _                                                                    |                        | -17              |     |       | -12              |     | V     |       |
| CMRR                                 | Common-Mode Rejection<br>Ratio        | R <sub>S</sub> ≤ 10 kΩ                                               | 80                     | 100              |     | 70    | 95               |     | dB    |       |
| PSRR                                 | Supply Voltage Rejection<br>Ratio     | See <sup>(4)</sup>                                                   |                        | 80               | 100 |       | 70               | 90  |       | dB    |
| I <sub>S</sub>                       | Supply Current                        |                                                                      |                        |                  | 300 | 400   |                  | 400 | 500   | μA    |

(1) Unless otherwise specified, the specifications apply over the full temperature range and for  $V_S = \pm 20V$  for the LF442A and for  $V_S = \pm 15V$ for the LF442.  $V_{OS},$  I\_B, and I\_{OS} are measured at  $V_{CM}$  = 0. Refer to RETS442X for LF442MH military specifications.

(2)

The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, (3) Ti. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation,  $P_D$ .  $T_j = T_A + \theta_{jA}P_D$  where  $\theta_{jA}$  is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

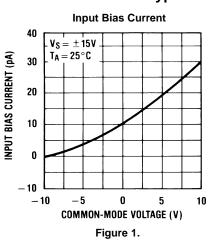
Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with (4)common practice from ±15V to ±5V for the LF442 and ±20V to ±5V for the LF442A.



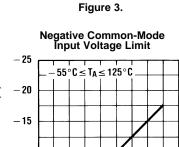

www.ti.com

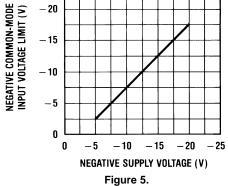
## AC Electrical Characteristics<sup>(1)(2)</sup>

| Symbol         | Deremeter                       | Conditions                                                 |     | LF442A |     | LF442 |      |     | Unite  |
|----------------|---------------------------------|------------------------------------------------------------|-----|--------|-----|-------|------|-----|--------|
|                | Parameter                       | Conditions                                                 | Min | Тур    | Max | Min   | Тур  | Max | Units  |
|                | Amplifier to Amplifier Coupling | T <sub>A</sub> = 25°C, f = 1 Hz-20 kHz (Input<br>Referred) |     | -120   |     |       | -120 |     | dB     |
| SR             | Slew Rate                       | $V_{S} = \pm 15V, T_{A} = 25^{\circ}C$                     | 0.8 | 1      |     | 0.6   | 1    |     | V/µs   |
| GBW            | Gain-Bandwidth Product          | $V_{S} = \pm 15V, T_{A} = 25^{\circ}C$                     | 0.8 | 1      |     | 0.6   | 1    |     | MHz    |
| en             | Equivalent Input Noise Voltage  | $T_A = 25^{\circ}C, R_S = 100\Omega, f = 1 \text{ kHz}$    |     | 35     |     |       | 35   |     | nV/√Hz |
| i <sub>n</sub> | Equivalent Input Noise Current  | $T_A = 25^{\circ}C, f = 1 \text{ kHz}$                     |     | 0.01   |     |       | 0.01 |     | pA/√Hz |


Unless otherwise specified, the specifications apply over the full temperature range and for V<sub>S</sub> = ±20V for the LF442A and for V<sub>S</sub> = ±15V for the LF442. V<sub>OS</sub>, I<sub>B</sub>, and I<sub>OS</sub> are measured at V<sub>CM</sub> = 0.
Refer to RETS442X for LF442MH military specifications.




#### SIMPLIFIED SCHEMATIC




## **Typical Performance Characteristics**









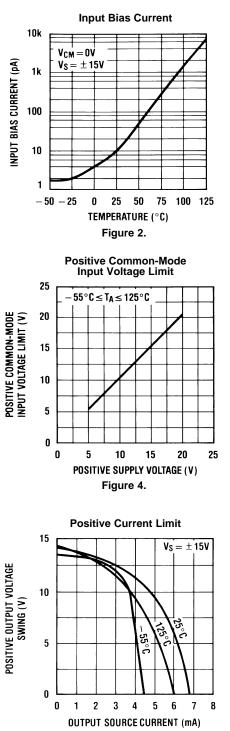
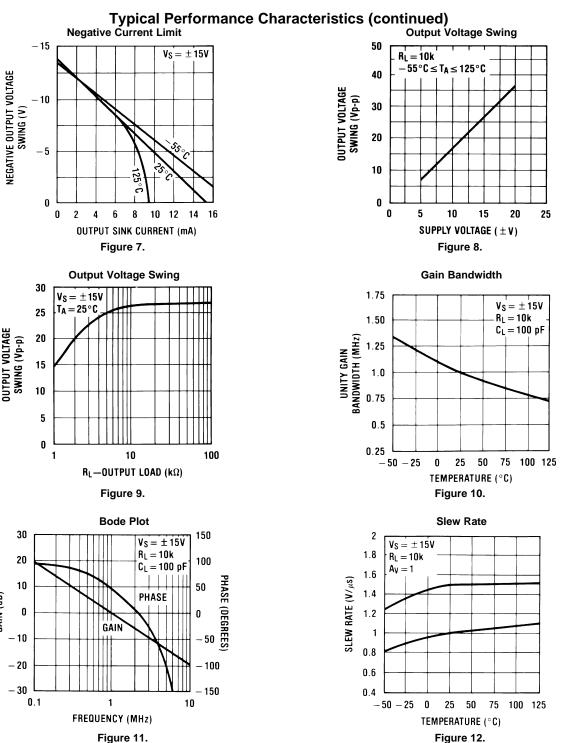



Figure 6.

Texas **NSTRUMENTS** 


www.ti.com

#### SNOSC03E - APRIL 1999-REVISED OCTOBER 2013


OUTPUT VOLTAGE Swing (Vp-p)

GAIN (dB)

6







TEXAS INSTRUMENTS

www.ti.com

SNOSC03E - APRIL 1999-REVISED OCTOBER 2013

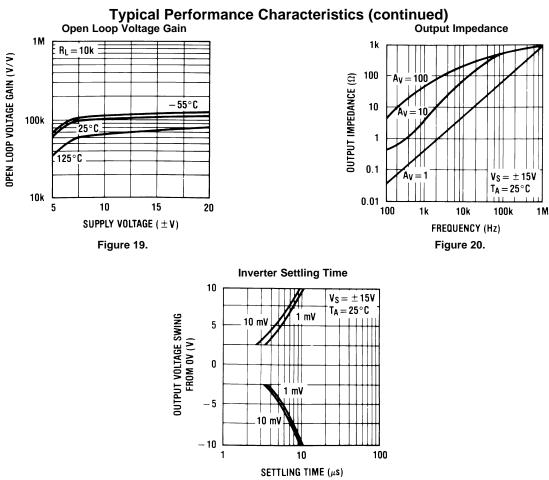



Figure 21.



# Pulse Response

## **Typical Performance Characteristics (continued)**

 $R_L = 10 \text{ k}\Omega, C_L = 10 \text{ pF}$ 

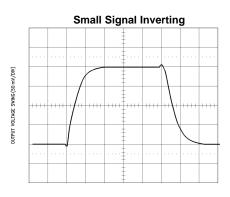
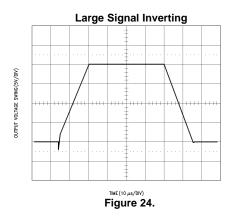
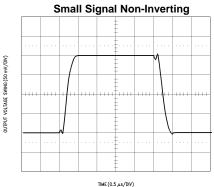
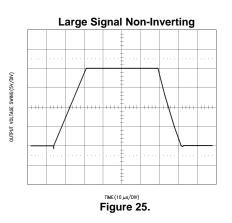






Figure 22.





тме (0.5 µs/DIV) Figure 23.





www.ti.com

#### **APPLICATION HINTS**

This device is a dual low power op amp with internally trimmed input offset voltages and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

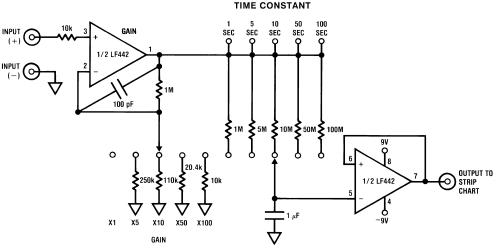
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased to allow normal circuit operation with power supplies of  $\pm 3.0$ V. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifiers will drive a 10 k $\Omega$  load resistance to ± 10V over the full temperature range.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.


A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequenty there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.



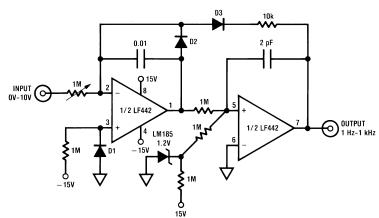
LF442

www.ti.com

#### **Typical Applications**



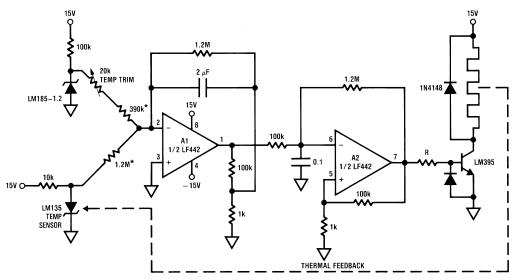
#### **Battery Powered Strip Chart Preamplifier**


TIME CONSTANT

Runs from 9v batteries (±9V supplies)

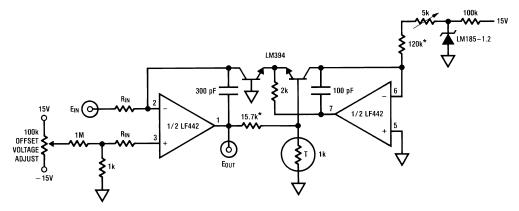
Fully settable gain and time constant

Battery powered supply allows direct plug-in interface to strip chart recorder without common-mode problems


#### "No FET" Low Power V→F Converter



Trim 1M pot for 1 kHz full-scale output 15 mW power drain No integrator reset FET required Mount D1 and D2 in close proximity 1% linearity to 1 kHz

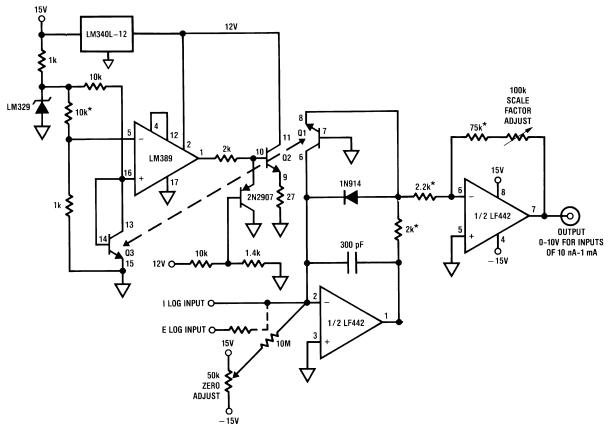



## High Efficiency Crystal Oven Controller



- T<sub>control</sub>= 75°C
- A1's output represents the amplified difference between the LM335 temperature sensor and the crystal oven's temperature
- A2, a free running duty cycle modulator, drives the LM395 to complete a servo loop
- Switched mode operation yields high efficiency
- 1% metal film resistor

#### **Conventional Log Amplifier**

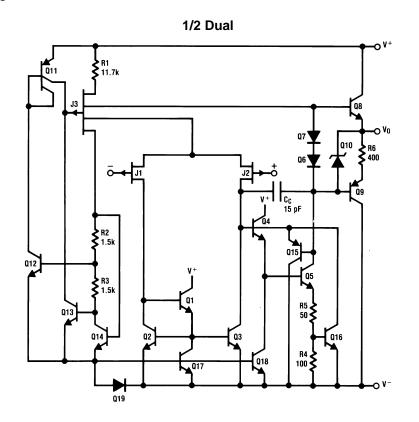



$$\begin{split} & E_{OUT} = - \left[ \log 10 \left( \frac{E_{IN}}{R_{IN}} \right) + 5 \right] \\ & R_T = Tel \ Labs \ type \ Q81 \\ & Trim \ 5k \ for \ 10 \ \mu A \ through \ the \ 5k-120k \ combination \\ & *1\% \ film \ resistor \end{split}$$



**LF442** 

#### **Unconventional Log Amplifier**




Q1, Q2, Q3 are included on LM389 amplifier chip which is temperature-stabilized by the LM389 and Q2-Q3, which act as a heater-sensor pair.

Q1, the logging transistor, is thus immune to ambient temperature variation and requires no temperature compensation at all.



### **Detailed Schematic**



## **REVISION HISTORY**

| Changes from Revision C (March 2013) to Revision D | Page |
|----------------------------------------------------|------|
| Changed layout of National Data Sheet to TI format |      |
| Changes from Revision D (March 2013) to Revision E | Page |
| Changed Input Noise Voltage units                  | 4    |



## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp    | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|----------------------------|-------------------------|------------------|--------------|-------------------------|---------|
| LF442ACN         | NRND          | PDIP         | Р                  | 8    | 40             | TBD                        | Call TI                 | Call TI          | 0 to 70      | LF<br>442ACN            |         |
| LF442ACN/NOPB    | ACTIVE        | PDIP         | Р                  | 8    | 40             | Green (RoHS<br>& no Sb/Br) | CU SN                   | Level-1-NA-UNLIM | 0 to 70      | LF<br>442ACN            | Samples |
| LF442AMH         | ACTIVE        | TO-99        | LMC                | 8    | 500            | TBD                        | Call TI                 | Call TI          | -55 to 125   | LF442AMH                | Samples |
| LF442AMH/NOPB    | ACTIVE        | TO-99        | LMC                | 8    | 500            | Green (RoHS<br>& no Sb/Br) | POST-PLATE              | Level-1-NA-UNLIM | -55 to 125   | LF442AMH                | Samples |
| LF442CN          | NRND          | PDIP         | Р                  | 8    | 40             | TBD                        | Call TI                 | Call TI          | 0 to 70      | LF<br>442CN             |         |
| LF442CN/NOPB     | ACTIVE        | PDIP         | Р                  | 8    | 40             | Green (RoHS<br>& no Sb/Br) | CU SN                   | Level-1-NA-UNLIM | 0 to 70      | LF<br>442CN             | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

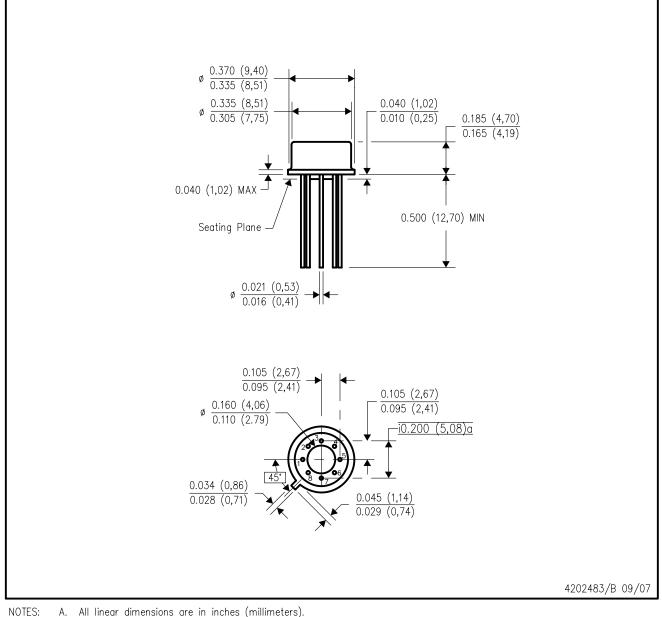
<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.



# PACKAGE OPTION ADDENDUM

1-Nov-2013


(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

LMC (O-MBCY-W8)

# METAL CYLINDRICAL PACKAGE



- B. This drawing is subject to change without notice.
  - C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
  - D. Pin numbers shown for reference only. Numbers may not be marked on package.
  - E. Falls within JEDEC MO-002/TO-99.



P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated