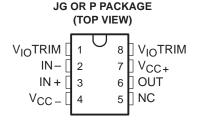
Direct Replacements for PMI and LTC OP27 and OP37 Series

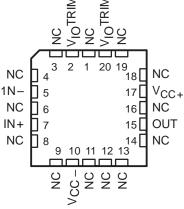
Features of OP27A, OP27C, OP37A, and OP37C:

- Maximum Equivalent Input Noise Voltage:
 3.8 nV/√Hz at 1 kHz
 5.5 nV/√Hz at 10 kHz
- Very Low Peak-to-Peak Noise Voltage at 0.1 Hz to 10 Hz ... 80 nV Typ
- Low Input Offset Voltage . . . 25 μV Max
- High Voltage Amplification ...1 V/μV Min

Feature of OP37 Series:

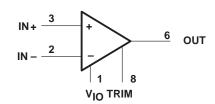

Minimum Slew Rate . . . 11 V/μs

description


The OP27 and OP37 operational amplifiers combine outstanding noise performance with excellent precision and high-speed specifications. The wideband noise is only 3 nV/ $\sqrt{\text{Hz}}$ and with the 1/f noise corner at 2.7 Hz, low noise is maintained for all low-frequency applications.

The outstanding characteristics of the OP27 and OP37 make these devices excellent choices for low-noise amplifier applications requiring precision performance and reliability. Additionally, the OP37 is free of latch-up in high-gain, large-capacitive-feedback configurations.

The OP27 series is compensated for unity gain. The OP37 series is decompensated for increased bandwidth and slew rate and is stable down to a gain of 5.



FK PACKAGE (TOP VIEW)

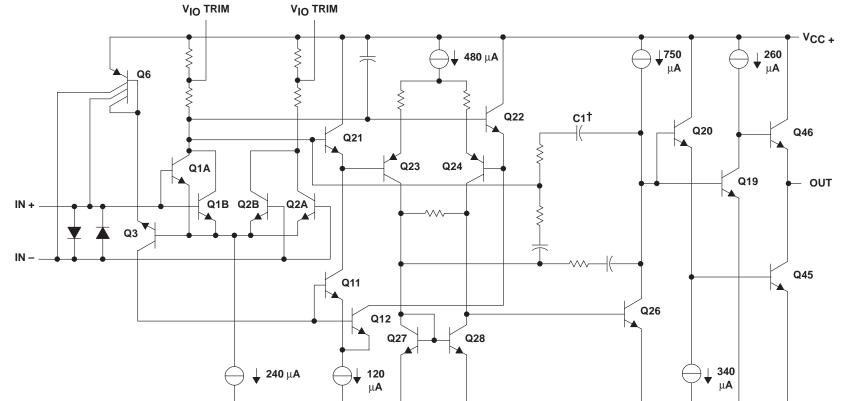
NC - No internal connection

symbol

Pin numbers are for the JG and P packages.

The OP27A, OP27C, OP37A, and OP37C are characterized for operation over the full military temperature range of -55° C to 125° C. The OP27E, OP27G, OP37E, and OP37G are characterized for operation from -25° C to 85° C.

AVAILABLE OPTIONS


	Viemov	STABLE		PACKAGE		
TA	V _{IO} max AT 25°C	GAIN	CERAMIC DIP (JG)	CHIP CARRIER (FK)	PLASTIC DIP (P)	
	25\/	1	_	_	OP27EP	
-25°C to 85°C	25 μV	5	_	_	OP37EP	
-25°C 10 65°C	100 μV	1	_	_	OP27GP	
		5	_	_	OP37GP	
	25 μV	1	OP27AJG	OP27AFK	_	
−55°C to 125°C	25 μν	5	OP37AJG	OP37AFK	_	
	400\/	1	OP27CJG	_	_	
	100 μV	5	OP37CJG	_	_	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

- VCC -

†C1 = 120 pF for OP27 C1 = 15 pF for OP37

OP27A, OP27C, OP27E, OP27G OP37A, OP37C, OP37E, OP37G LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER

SLOS100C - FEBRUARY 1989 - REVISED SEPTEMBER 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)
Supply voltage, V _{CC} (see Note 1)
Input voltage, V _I V _{CC±}
Duration of output short circuit unlimited
Differential input current (see Note 2)±25 mA
Continuous power dissipation See Dissipation Rating Table
Operating free-air temperature range: OP27A, OP27C, OP37A, OP37C – 55°C to 125°C
OP27E, OP27G, OP37E, OP37G – 25°C to 85°C
Storage temperature range – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or FK package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: P package

NOTES: 1. All voltage values are with respect to the midpoint between V_{CC+} and V_{CC-} unless otherwise noted.

2. The inputs are protected by back-to-back diodes. Current-limiting resistors are not used in order to achieve low noise. Excessive input current will flow if a differential input voltage in excess of approximately ± 0.7 V is applied between the inputs unless some limiting resistance is used.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
JG	1050 mW	8.4 mW/°C	546 mW	210 mW
FK	1375 mW	11.0 mW/°C	715 mW	275 mW
Р	1000 mW	8.0 mW/°C	520 mW	N/A

LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER

SLOS100C - FEBRUARY 1989 - REVISED SEPTEMBER 2000

recommended operating conditions

		OP27A, OP37A			OP27C, OP37C			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	4	15	22	4	15	22	V	
Supply voltage, V _{CC} -		-4	-15	-22	-4	-15	-22	V
Common mode input voltage Vie	$V_{CC\pm} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$	± 11			±11			V
Common-mode input voltage, V _{IC}	$V_{CC\pm} = \pm 15 \text{ V}, T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$	±10.3			±10.2			V
Operating free-air temperature, TA		-55		125	-55		125	°C

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

	DADAMETED	TEST OF	MOITIONS	_ +	OP:	27A, OP3	7A	OP:	27C, OP3	7C	UNIT
	PARAMETER	IESI CC	ONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII
VIO	Input offset voltage	$V_{O} = 0$,	VIC = 0	25°C		10	25		30	100	μV
VIO	input onset voltage	$R_S = 50 \Omega$,	See Note 3	Full range			60			300	μν
ανιο	Average temperature coefficient of input offset voltage			Full range		0.2	0.6		0.4	1.8	μV/°C
	Long-term drift of input offset voltage	See Note 4				0.2	1		0.4	2	μV/mo
lio	Input offset current	$V_{O} = 0$	$V_{O} = 0, \qquad V_{IC} = 0$			7	35		12	75	nA
10	input onset current	VO = 0,	vIC = 0	Full range			50			135	ПА
I _{IB}	Input bias current	$V_{O} = 0$,	$V_O = 0$, $V_{IC} = 0$			±10	±40		±15	±80	nA
пр	input bias carrent	VO = 0,	VIC - 0	Full range			±60			±150	11/ (
Vion	Common-mode input			25°C	11 to –11			11 to –11			V
VICR	voltage range			Full range	10.3 to -10.3			10.5 to -10.5			V
		$R_L \ge 2 k\Omega$			±12	±13.8		±11.5	±13.5		
Vом	Peak output voltage swing	$R_L \ge 0.6 \text{ k}\Omega$			±10	±11.5		±10	±11.5		V
		$R_L \ge 2 k\Omega$		Full range	±11.5			10.5			
		$R_L \ge 2 k\Omega$,	$V_0 = \pm 10 \text{ V}$		1000	1800		700	1500		
	Large-signal differential	$R_L \ge 1 \ k\Omega$,	$V_0 = \pm 10 \text{ V}$		800	1500			1500		
AVD	voltage amplification	$R_L \ge 0.6 \text{ k}\Omega$ $V_{CC\pm} = \pm 4$	$V_{O} = \pm 1 V$		250	700		200	500		V/mV
		$R_L \ge 2 k\Omega$,	$V_0 = \pm 10 \text{ V}$	Full range	600			300			
ri(CM)	Common-mode input resistance					3			2		GΩ
r _O	Output resistance	$V_{O} = 0$,	IO = 0	25°C		70			70		Ω
CMRR	Common-mode rejection	$V_{IC} = \pm 11 V$		25°C	114	126		100	120		dB
Jivii (i)	ratio	V _{IC} = ±10 V		Full range	110			94			QD.
ksvr	Supply voltage rejection	$V_{CC\pm} = \pm 4 \text{ V to } \pm 18 \text{ V}$		25°C	100	120		94	118		dB
+ F. II	ratio	$V_{CC\pm} = \pm 4$	5 V to ±18 V	Full range	96			86			

[†] Full range is – 55°C to 125°C.

NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power.

^{4.} Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{IO} during the first 30 days are typically 2.5 μ V (see Figure 3).

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	4	15	22	V
Supply voltage, V _{CC} _	-4	-15	-22	V
$V_{CC\pm} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$	±11			V
Common-mode input voltage, V_{IC} $V_{CC\pm} = \pm 15 \text{ V}, \qquad T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$	±10.5			V
Operating free-air temperature, T _A	-25		85	°C

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	- +	OP:	27E, OP3	7E	OP2	27G, OP3	37G	UNIT
	PARAMETER	l lesi co	SNOTTIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V10	Input offset voltage	$V_0 = 0$,	V _{IC} = 0	25°C		10	25		30	100	μV
VIO	input onset voltage	$R_S = 50 \Omega$,	See Note 3	Full range			60			220	μν
αV _{IO}	Average temperature coefficient of input offset voltage			Full range		0.2	0.6		0.4	1.8	μV/°C
	Long-term drift of input offset voltage	See Note 4				0.2	1		0.4	2	μV/mo
lio	Input offset current	V _O = 0,	V10 = 0	25°C		7	35		12	75	nA
110	input onset current	VO = 0,	VIC = 0	Full range			50			135	ША
I _{IB}	Input bias current	\/o = 0	$V_{O} = 0$, $V_{IC} = 0$			±10	±40		±15	±80	nA
I IB	input blue duriont	VO = 0,	VIC - 0	Full range			±60			±150	117 (
VICR voltage range				25°C	11 to –11			11 to –11			V
VICK ,	voltage range			Full range	10.3 to -10.3			10.5 to -10.5			-
	Deal autout callens	$\begin{aligned} R_L &\geq 2 \ k\Omega \\ R_L &\geq 0.6 \ k\Omega \end{aligned}$			±12	±13.8		±11.5	±13.5		
Vом	Peak output voltage swing				±10	±11.5		±10	±11.5		V
		$R_L \ge 2 k\Omega$		Full range	±11.5			10.5			
			$V_0 = \pm 10 \text{ V}$		1000	1800		700	1500		
	Large-signal differential		$V_0 = \pm 10 \text{ V}$		800	1500			1500		
AVD	voltage amplification	$R_L \ge 0.6 \text{ k}\Omega$ $V_{CC\pm} = \pm 4$	$V_0 = \pm 1 V,$		250	700		200	500		V/mV
		$R_L \ge 2 k\Omega$,	$V_0 = \pm 10 \text{ V}$	Full range	600			450			
ri(CM)	Common-mode input resistance					3			2		GΩ
r _o	Output resistance	$V_{O} = 0$,	I _O = 0	25°C		70			70		Ω
CMRR	Common-mode rejection	V _{IC} = ±11 V		25°C	114	126		100	120		dB
	ratio	V _{IC} = ±10 V		Full range	110			96			
ksvr	Supply voltage rejection	$V_{CC\pm} = \pm 4 \text{ V to } \pm 18 \text{ V}$		25°C	100	120		94	118		dB
JVK	ratio	$V_{CC\pm} = \pm 4$.5 V to ±18 V	Full range	96			90			~5

[†] Full range is – 25°C to 85°C.

NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power.

Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods after the
first 30 days of operation. Excluding the initial hour of operation, changes in V_{IO} during the first 30 days are typically 2.5 μV
(see Figure 3).

OP27 operating characteristics over operating free-air temperature range, $V_{CC\pm}$ = $\pm 15~V$

	PARAMETER	TEST CONI	TEST CONDITIONS -		OP27A, OP27E			OP27C, OP27G		
	PARAIVIETER	TEST CON			TYP	MAX	MIN	TYP	MAX	UNIT
SR	Slew rate	$A_{VD} \ge 1$,	$R_L \ge 2 \ k\Omega$	1.7	2.8		1.7	2.8		V/μs
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz, See Figure 34	$R_S = 20 \Omega$,		0.08	0.18		0.09	0.25	μV
		f = 10 Hz,	R _S = 20 Ω		3.5	5.5		3.8	8	
Vn	Equivalent input noise voltage	f = 30 Hz,	$R_S = 20 \Omega$		3.1	4.5		3.3	5.6	nV/√ Hz
		f = 1 kHz,	$R_S = 20 \Omega$		3	3.8		3.2	4.5	
		f = 10 Hz,	See Figure 35		1.5	4		1.5		
In	Equivalent input noise current	f = 30 Hz,	See Figure 35		1	2.3		1		pA/√ Hz
		f = 1 kHz,	See Figure 35		0.4	0.6		0.4	0.6	
	Gain-bandwidth product	f = 100 kHz		5	8	·	5	8		MHz

OP37 operating characteristics over operating free-air temperature range, $V_{CC\pm}$ = $\pm 15~V$

	PARAMETER	TEST CON	TEST CONDITIONS		OP37A, OP37E			OP37C, OP37G		
	PARAIVIETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
SR	Slew rate	$A_{VD} \ge 5$,	$R_L \ge 2 k\Omega$	11	17		11	17		V/μs
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz, See Figure 34	$R_S = 20 \Omega$,		0.08	0.18		0.09	0.25	μV
		f = 10 Hz,	$R_S = 20 \Omega$		3.5	5.5		3.8	8	
٧n	V _n Equivalent input noise voltage	f = 30 Hz,	$R_S = 20 \Omega$		3.1	4.5		3.3	5.6	nV/√ Hz
	voltage	f = 1 kHz,	R _S = 20 Ω		3	3.8		3.2	4.5	1
		f = 10 Hz,	See Figure 35		1.5	4		1.5		
In	Equivalent input noise current	f = 30 Hz,	See Figure 35		1	2.3		1		pA/√ Hz
		f = 1 kHz,	See Figure 35		0.4	0.6		0.4	0.6]
	Cain handwidth aradust	f = 10 kHz		45	63		45	63		NAL I-
	Gain-bandwidth product	$A_V \ge 5$,	f = 1 MHz		40			40		MHz

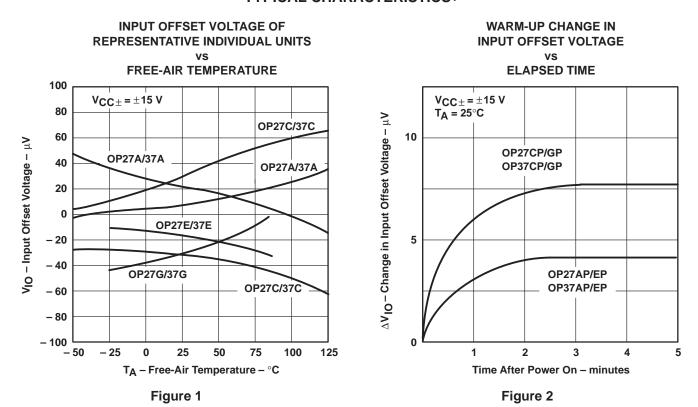
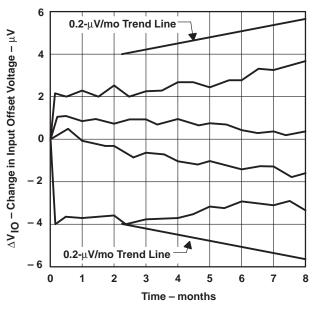

TYPICAL CHARACTERISTICS

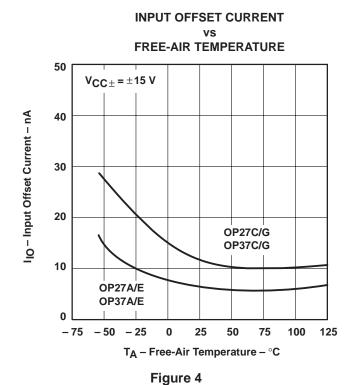
Table of Graphs

			FIGURE
VIO	Input offset voltage	vs Temperature	1
ΔVΙΟ	Change in input offset voltage	vs Time after power on vs Time (long-term drift)	2 3
lιο	Input offset current	vs Temperature	4
I _{IB}	Input bias current	vs Temperature	5
VICR	Common-mode input voltage range	vs Supply voltage	6
V _{OM}	Maximum peak output voltage	vs Load resistance	7
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	8, 9
AVD	Differential voltage amplification	vs Supply voltage vs Load resistance vs Frequency	10 11 12, 13, 14
CMRR	Common-mode rejection ratio	vs Frequency	15
ksvr	Supply voltage rejection ratio	vs Frequency	16
SR	Slew rate	vs Temperature vs Supply voltage vs Load resistance	17 18 19
φm	Phase margin	vs Temperature	20, 21
ф	Phase shift	vs Frequency	12, 13
V _n	Equivalent input noise voltage	vs Bandwidth vs Source resistance vs Supply voltage vs Temperature vs Frequency	22 23 24 25 26
In	Equivalent input noise current	vs Frequency	27
	Gain-bandwidth product	vs Temperature	20, 21
los	Short-circuit output current	vs Time	28
Icc	Supply current	vs Supply voltage	29
	Pulse response	Small signal Large signal	30, 32 31, 33

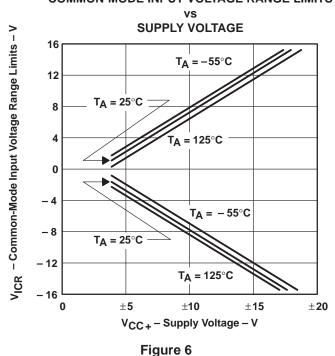
TYPICAL CHARACTERISTICS[†]

LONG-TERM DRIFT OF INPUT OFFSET VOLTAGE OF REPRESENTATIVE INDIVIDUAL UNITS

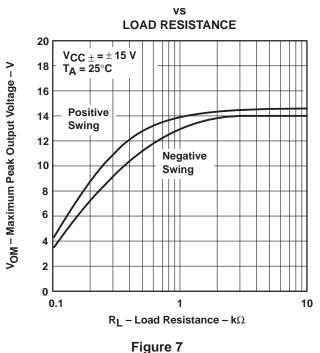



Figure 3

[†] Data for temperatures below - 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.


INPUT BIAS CURRENT

TYPICAL CHARACTERISTICS[†]


FREE-AIR TEMPERATURE $\pm\, 50$ $V_{CC\pm} = \pm 15 V$ \pm 40 IlB - Input Bias Current - nA $\pm\,30$ OP27C/G $\pm\,20$ OP37C/G ± 10 OP27A/E OP37A/E -75 -50 -2525 50 75 100 125 T_A - Free-Air Temperature - °C

COMMON-MODE INPUT VOLTAGE RANGE LIMITS

MAXIMUM PEAK OUTPUT VOLTAGE

Figure 5

 † Data for temperatures below -25°C and above 85 $^\circ\text{C}$ are applicable to the OP27A, OP27C, OP37A, and OP37C only.

TYPICAL CHARACTERISTICS

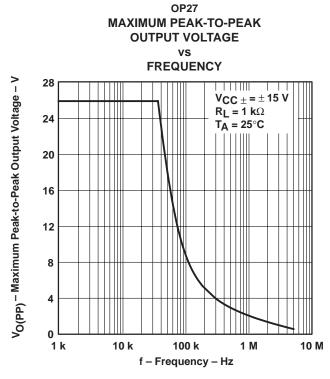


Figure 8

OP27A, OP27E, OP37A, OP37E LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION VS

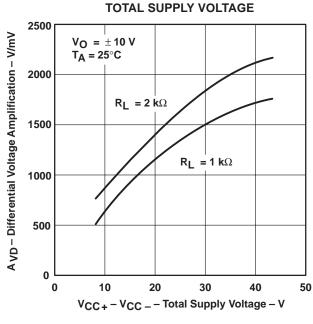


Figure 10

OP37 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VS

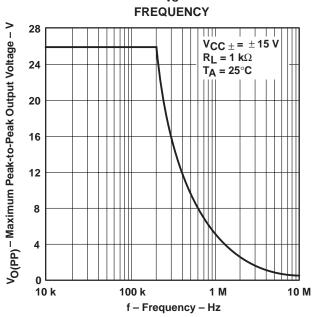


Figure 9

OP27A, OP27E, OP37A, OP37E LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION VS

LOAD RESISTANCE

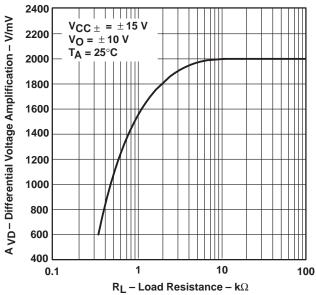
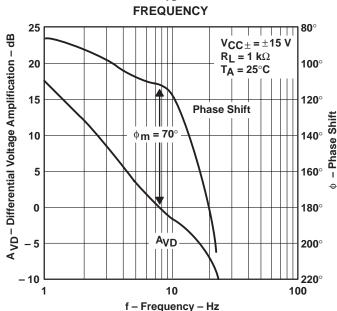



Figure 11

TYPICAL CHARACTERISTICS

OP27 LARGE-SIGNAL DIFFERENTIAL **VOLTAGE AMPLIFICATION AND PHASE SHIFT**

OP37 LARGE-SIGNAL DIFFERENTIAL **VOLTAGE AMPLIFICATION AND PHASE SHIFT**

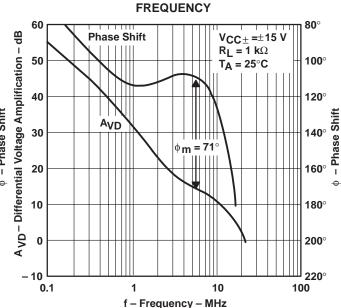


Figure 12

OP27A, OP27E, OP37A, OP37E LARGE-SIGNAL **DIFFERENTIAL VOLTAGE AMPLIFICATION**

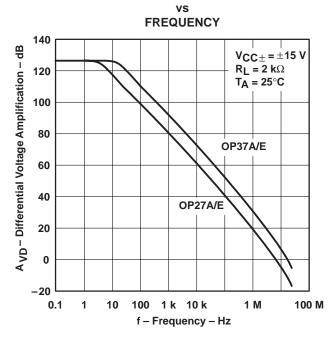


Figure 14

Figure 13

OP27A, OP27E, OP37A, OP37E **COMMON-MODE REJECTION RATIO**

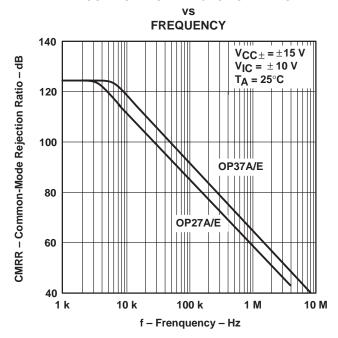


Figure 15

TYPICAL CHARACTERISTICS†

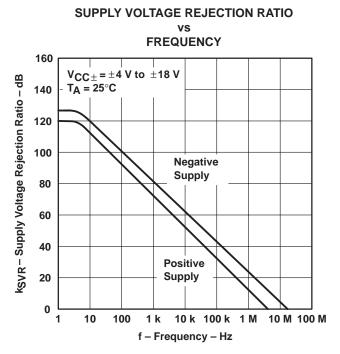
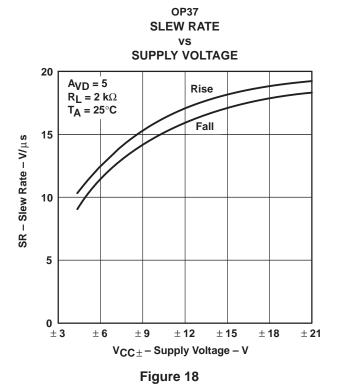



Figure 16

SLEW RATE
vs
FREE-AIR TEMPERATURE

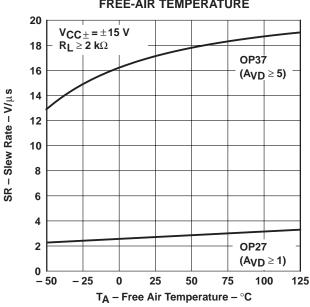
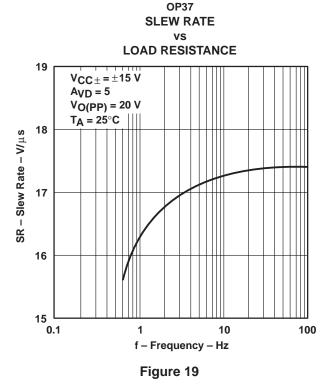
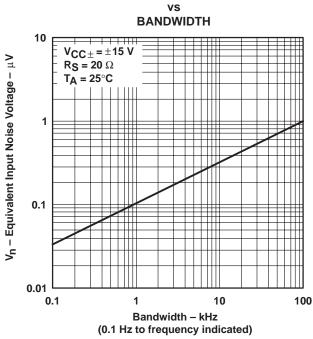



Figure 17

 † Data for temperatures below -25° C and above 85° C are applicable to the OP27A, OP27C, OP37A, and OP37C only.



TYPICAL CHARACTERISTICS[†]

OP37 OP27 PHASE MARGIN AND PHASE MARGIN AND GAIN-BANDWIDTH PRODUCT GAIN-BANDWIDTH PRODUCT FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 80 85° 11 $V_{CC\pm} = \pm 15 \text{ V}$ $V_{CC\pm} = \pm 15 \text{ V}$ 75 80 85 10.6 φm 70° 10.2 9.8 9.4 9 8.6 8.2 9 8.2 7 8 80 75° Gain-Bandwidth Product - MHz φm 65 **70**° om – Phase Margin om - Phase Margin 60° 65° GBW (f = 10 kHz) 60° 55° 50° 55° 45 50° GBW (f = 100 kHz) 50 45 40° 40° 35° 45 7.4 30° 40 35° - 75 - 50 - 25 25 50 75 100 50 125 -50- 25 25 75 100 125 T_A – Free-Air Temperature – ${}^{\circ}C$ T_A – Free-Air Temperature – °C

EQUIVALENT INPUT NOISE VOLTAGE

Figure 20

TOTAL EQUIVALENT INPUT NOISE VOLTAGE

Figure 21

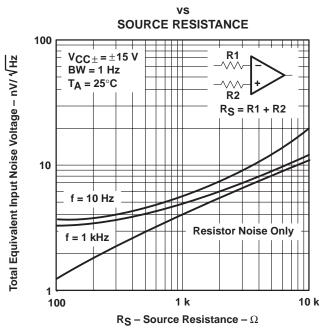


Figure 22 Figure 23

† Data for temperatures below - 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.

STRUMENTS POST OFFICE BOX 655303 ● DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS[†]

OP27A, OP27E, OP37A, OP37E EQUIVALENT INPUT NOISE VOLTAGE VS

TOTAL SUPPLY VOLTAGE

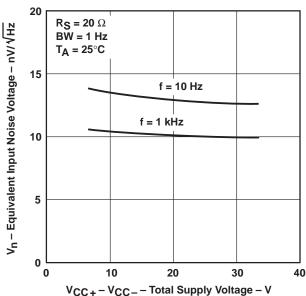


Figure 24

OP27A, OP27E, OP37A, OP37E EQUIVALENT INPUT NOISE VOLTAGE

vs FREQUENCY

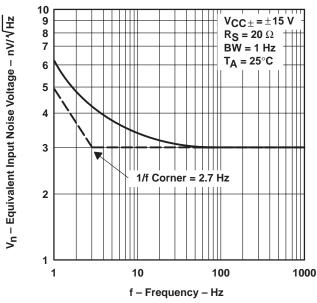


Figure 26

OP27A, OP27E, OP37A, OP37E EQUIVALENT INPUT NOISE VOLTAGE VS

FREE-AIR TEMPERATURE

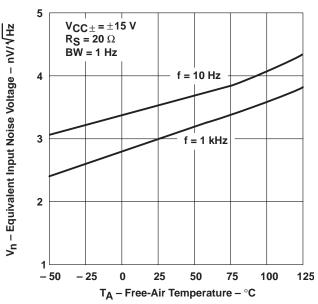


Figure 25

EQUIVALENT INPUT NOISE CURRENT

vs FREQUENCY

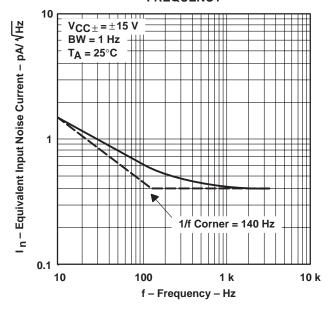


Figure 27

 $^{^\}dagger$ Data for temperatures below -25° C and above 85° C are applicable to the OP27A, OP27C, OP37A, and OP37C only.

TYPICAL CHARACTERISTICS[†]

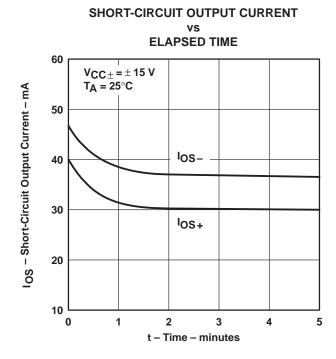


Figure 28

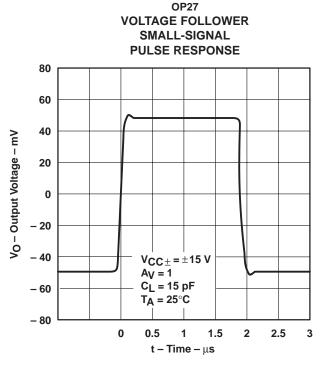
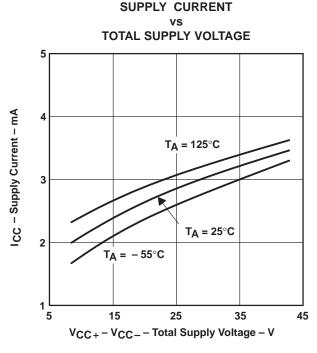
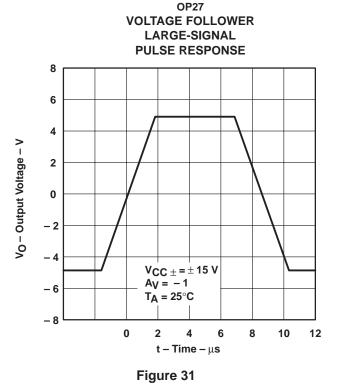
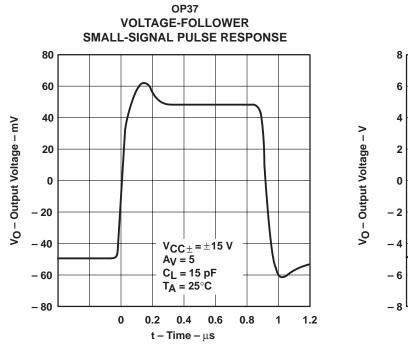


Figure 30


Figure 29

† Data for temperatures below - 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.

TYPICAL CHARACTERISTICS

VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE

8
6
4
2
2
0
1
VCC±=±15 V
Ay = 5
TA = 25°C
-8
0 1 2 3 4 5 6
t - Time - μs

OP37

Figure 32

Figure 33

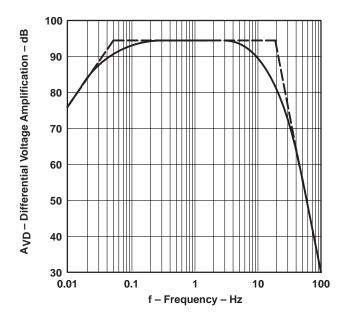
APPLICATION INFORMATION

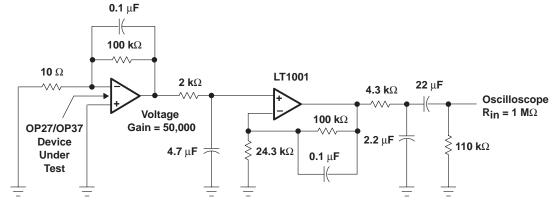
general

The OP27 and OP37 series devices can be inserted directly onto OP07, OP05, μ A725, and SE5534 sockets with or without removing external compensation or nulling components. In addition, the OP27 and OP37 can be fitted to μ A741 sockets by removing or modifying external nulling components.

noise testing

Figure 34 shows a test circuit for 0.1-Hz to 10-Hz peak-to-peak noise measurement of the OP27 and OP37. The frequency response of this noise tester indicates that the 0.1-Hz corner is defined by only one zero. Because the time limit acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz, the test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds.


Measuring the typical 80-nV peak-to-peak noise performance of the OP27 and OP37 requires the following special test precautions:


- 1. The device should be warmed up for at least five minutes. As the operational amplifier warms up, the offset voltage typically changes $4\,\mu\text{V}$ due to the chip temperature increasing from 10°C to 20°C starting from the moment the power supplies are turned on. In the 10-s measurement interval, these temperature-induced effects can easily exceed tens of nanovolts.
- 2. For similar reasons, the device should be well shielded from air currents to eliminate the possibility of thermoelectric effects in excess of a few nanovolts, which would invalidate the measurements.
- 3. Sudden motion in the vicinity of the device should be avoided, as it produces a feedthrough effect that increases observed noise.

APPLICATION INFORMATION

noise testing (continued)

NOTE: All capacitor values are for nonpolarized capacitors only.

Figure 34. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit and Frequency Response

APPLICATION INFORMATION

noise testing (continued)

When measuring noise on a large number of units, a noise-voltage density test is recommended. A 10-Hz noise-voltage density measurement correlates well with a 0.1-Hz to 10-Hz peak-to-peak noise reading since both results are determined by the white noise and the location of the 1/f corner frequency.

Figure 35 shows a circuit measuring current noise and the formula for calculating current noise.

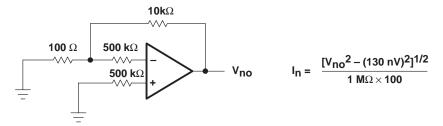


Figure 35. Current Noise Test Circuit and Formula

offset voltage adjustment

The input offset voltage and temperature coefficient of the OP27 and OP37 are permanently trimmed to a low level at wafer testing. However, if further adjustment of V_{IO} is necessary, using a 10-k Ω nulling potentiometer as shown in Figure 36 does not degrade the temperature coefficient α_{VIO} . Trimming to a value other than zero creates an α_{VIO} of $V_{IO}/300~\mu\text{V/°C}$. For example, if V_{IO} is adjusted to 300 μ V, the change in α_{VIO} is 1 μ V/°C.

The adjustment range with a 10-k Ω potentiometer is approximately ± 2.5 mV. If a smaller adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller potentiometer in conjunction with fixed resistors. The example in Figure 37 has an approximate null range of $\pm 200 \,\mu\text{V}$.

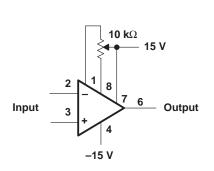


Figure 36. Standard Input Offset Voltage Adjustment

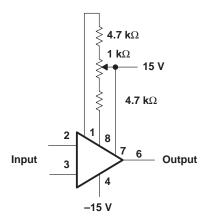
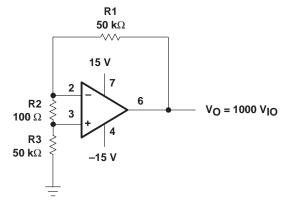


Figure 37. Input Offset Voltage Adjustment With Improved Sensitivity

offset voltage and drift

Unless proper care is exercised, thermoelectric effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals can exceed the inherent temperature coefficient ${}^{\infty}V_{1O}$ of the amplifier. Air currents should be minimized, package leads should be short, and the two input leads should be close together and at the same temperature.


LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER

SLOS100C - FEBRUARY 1989 - REVISED SEPTEMBER 2000

APPLICATION INFORMATION

offset voltage and drift (continued)

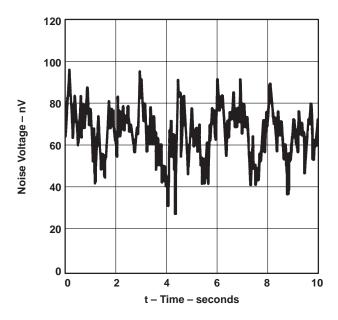
The circuit shown in Figure 38 measures offset voltage. This circuit can also be used as the burn-in configuration for the OP27 and OP37 with the supply voltage increased to 20 V, R1 = R3 = 10 k Ω , R2 = 200 Ω , and A_{VD} = 100.

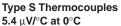
NOTE A: Resistors must have low thermoelectric potential.

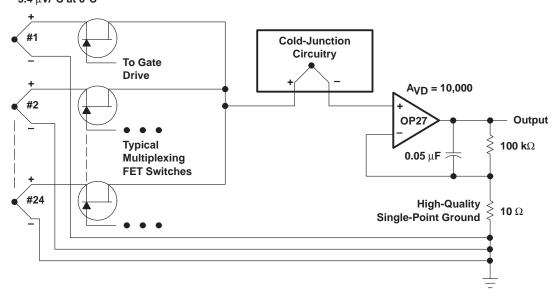
Figure 38. Test Circuit for Offset Voltage and Offset Voltage Temperature Coefficient

unity gain buffer applications

The resulting output waveform, when $R_f \le 100 \Omega$ and the input is driven with a fast large-signal pulse (> 1 V), is shown in the pulsed-operation diagram in Figure 39.




Figure 39. Pulsed Operation


During the initial (fast-feedthrough-like) portion of the output waveform, the input protection diodes effectively short the output to the input, and a current, limited only by the output short-circuit protection, is drawn by the signal generator. When $R_f \geq 500~\Omega$, the output is capable of handling the current requirements (load current $\leq 20~\text{mA}$ at 10 V), the amplifier stays in its active mode, and a smooth transition occurs. When $R_f > 2~k\Omega$, a pole is created with R_f and the amplifier's input capacitance, creating additional phase shift and reducing the phase margin. A small capacitor (20 pF to 50 pF) in parallel with R_f eliminates this problem.

APPLICATION INFORMATION

unity gain buffer applications (continued)

NOTE A: If 24 channels are multiplexed per second and the output is required to settle to 0.1 % accuracy, the amplifier's bandwidth cannot be limited to less than 30 Hz. The peak-to-peak noise contribution of the OP27 will still be only 0.11 μV, which is equivalent to an error of only 0.02°C.

Figure 40. Low-Noise, Multiplexed Thermocouple Amplifier and 0.1-Hz To 10-Hz Peak-to-Peak Noise Voltage

PACKAGE OPTION ADDENDUM

4-Mar-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
JM38510/13503BPA	ACTIVE	CDIP	JG	8	1	None	A42 SNPB	Level-NC-NC-NC
OP27AFKB	ACTIVE	LCCC	FK	20	1	None	POST-PLATE	Level-NC-NC-NC
OP27AJGB	ACTIVE	CDIP	JG	8	1	None	A42 SNPB	Level-NC-NC-NC
OP27CJGB	ACTIVE	CDIP	JG	8	1	None	A42 SNPB	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated