Precision Dual Difet ${ }^{\circledR}$ OPERATIONAL AMPLIFIER

FEATURES

- VERY LOW NOISE: $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10 kHz
- LOW V ${ }_{\text {os }}$: 1 mV max
- LOW DRIFT: $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- LOW I_{B} : 10pA max
- FAST SETTLING TIME: $2 \mu \mathrm{~s}$ to 0.01%
- UNITY-GAIN STABLE

DESCRIPTION

The OPA2107 dual operational amplifier provides precision Difet performance with the cost and space savings of a dual op amp. It is useful in a wide range of precision and low-noise analog circuitry and can be used to upgrade the performance of designs currently using BIFET ${ }^{\text {® }}$ type amplifiers.
The OPA2107 is fabricated on a proprietary dielectrically isolated (Difet) process. This holds input bias currents to very low levels without sacrificing other important parameters, such as input offset voltage, drift and noise. Laser-trimmed input circuitry yields excellent DC performance. Superior dynamic performance is achieved, yet quiescent current is held to under 2.5 mA per amplifier. The OPA2107 is unitygain stable.
The OPA2107 is available in plastic DIP and SOIC packages. Industrial temperature range versions are available.

APPLICATIONS

- data acquisition
- DAC OUTPUT AMPLIFIER
- OPTOELECTRONICS
- HIGH-IMPEDANCE SENSOR AMPS
- HIGH-PERFORMANCE AUDIO CIRCUITRY
- MEDICAL EQUIPMENT, CT SCANNERS

(4)

SPECIFICATIONS

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITION	OPA2107AP, AU			UNITS		
		MIN	TYP	MAX			
OFFSET VOLTAGE ${ }^{(1)}$ Input Offset Voltage Over Specified Temperature Average Drift Over Specified Temperature Power Supply Rejection	$\begin{gathered} \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 10 \text { to } \pm 18 \mathrm{~V} \end{gathered}$	80	$\begin{gathered} 100 \\ 0.5 \\ 3 \\ 96 \end{gathered}$	$\begin{gathered} 1 \\ 2 \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{~dB} \end{gathered}$		
INPUT BIAS CURRENT ${ }^{(1)}$ Input Bias Current Over Specified Temperature Input Offset Current Over Specified Temperature	$\begin{aligned} & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 4 \\ 0.25 \\ 1 \end{gathered}$	$\begin{gathered} 10 \\ 1.5 \\ 8 \\ 1 \end{gathered}$	pA nA pA nA		
INPUT NOISE Voltage: $\mathrm{f}=10 \mathrm{~Hz}$ $\mathrm{f}=100 \mathrm{~Hz}$ $\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{f}=10 \mathrm{kHz}$ $\mathrm{BW}=0.1 \text { to } 10 \mathrm{~Hz}$ $B W=10 \text { to } 10 \mathrm{kHz}$ Current: $f=0.1 \mathrm{~Hz}$ thru 20kHz $\mathrm{BW}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}$	$\mathrm{R}_{\mathrm{S}}=0$		$\begin{gathered} 30 \\ 12 \\ 9 \\ 8 \\ 1.2 \\ 0.85 \\ 1.2 \\ 23 \end{gathered}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{Vp}$-p $\mu \mathrm{Vrms}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$ fAp-p		
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 10^{13}\| \| 2 \\ & 10^{14}\| \| \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	$\begin{gathered} \pm 10.5 \\ \pm 10.2 \\ 80 \end{gathered}$	$\begin{gathered} \pm 11 \\ \pm 10.5 \\ 94 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~dB} \end{gathered}$		
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\begin{aligned} & 82 \\ & 80 \end{aligned}$	$\begin{aligned} & 96 \\ & 94 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		
DYNAMIC RESPONSE Slew Rate Settling Time: 0.1\% 0.01% Gain Bandwidth Product THD + Noise Channel Separation	$\begin{gathered} G=+1 \\ G=-1,10 \mathrm{~V} \text { Step } \\ G=100 \\ G=+1, f=1 \mathrm{kHz} \\ f=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$	13	$\begin{gathered} 18 \\ 1.5 \\ 2 \\ 4.5 \\ 0.001 \\ 120 \end{gathered}$		V/us $\mu \mathrm{s}$ $\mu \mathrm{s}$ MHz \% dB		
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Current		± 4.5	$\begin{gathered} \pm 15 \\ \pm 4.5 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
OUTPUT Voltage Output Over Specified Temperature Short Circuit Current Output Resistance, Open-Loop Capacitive Load Stability	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \\ 1 \mathrm{MHz} \\ \mathrm{G}=+1 \end{gathered}$	$\begin{gathered} \pm 11 \\ \pm 10.5 \\ \pm 10 \end{gathered}$	$\begin{gathered} \pm 12 \\ \pm 11.5 \\ \pm 40 \\ 70 \\ 1000 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \Omega \\ \mathrm{pF} \end{gathered}$		
TEMPERATURE RANGE Specification Operating Storage Thermal Resistance (θ_{J-A}) 8-Pin DIP 8-Lead Surface Mount		$\begin{aligned} & -25 \\ & -25 \\ & -40 \end{aligned}$	$\begin{gathered} 90 \\ 175 \end{gathered}$	$\begin{gathered} +85 \\ +85 \\ +125 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

NOTE: (1) Specified with devices fully warmed up.

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTE: Stresses above these ratings may cause permanent damage

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	(1)					
TEMPERATURE								
RANGE				$	$	OPA2107AP	Plastic DIP	006
:---	:---:	:---:						
OPA2107AU	SO-8 SOIC	182						

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book

TYPICAL PERFORMANCE CURVES

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

GAIN-BANDWIDTH AND SLEW RATE

TYPICAL PERFORMANCE CURVES (CONT)

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

OPA2107 LARGE-SIGNAL RESPONSE

Time ($2 \mu \mathrm{~s} / \mathrm{div}$)

Time (200ns/div)

APPLICATIONS INFORMATION AND CIRCUITS

The OPA2107 is unity-gain stable and has excellent phase margin. This makes it easy to use in a wide variety of applications.
Power supply connections should be bypassed with capacitors positioned close to the amplifier pins. In most cases, $0.1 \mu \mathrm{~F}$ ceramic capacitors are adequate. Applications with larger load currents and fast transient signals may need up to $1 \mu \mathrm{~F}$ tantalum bypass capacitors.

INPUT BIAS CURRENT

The OPA2107's Difet input stages have very low input bias current-an order of magnitude lower than BIFET op amps. Circuit board leakage paths can significantly degrade performance. This is especially evident with the SO-8 surfacemount package where pin-to-pin dimensions are particularly small. Residual soldering flux, dirt, and oils, which conduct leakage current, can be removed by proper cleaning. In most instances a two-step cleaning process is adequate using a clean organic solvent rinse followed by de-ionized water. Each rinse should be followed by a 30 -minute bake at $85^{\circ} \mathrm{C}$.

A circuit board guard pattern effectively reduces errors due to circuit board leakage (Figure 1). By encircling critical high impedance nodes with a low impedance connection at the same circuit potential, any leakage currents will flow harmlessly to the low impedance node. Guard traces should be placed on all levels of a multiple-layer circuit board.

FIGURE 1. Connection of Input Guard.

FIGURE 2. FET Input Instrumentation Amplifier.

Using the INA106 for an output difference amplifier extends the input common-mode range of an instrumentation amplifier to $\pm 10 \mathrm{~V}$. A conventional IA with a unity-gain difference amplifier has an input common-mode range limited to $\pm 5 \mathrm{~V}$ for an output swing of $\pm 10 \mathrm{~V}$. This is because a unitygain difference amp needs $\pm 5 \mathrm{~V}$ at the input for 10 V at the output, allowing only 5 V additional for common-mode range.

FIGURE 3. Precision Instrumentation Amplifier.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

