

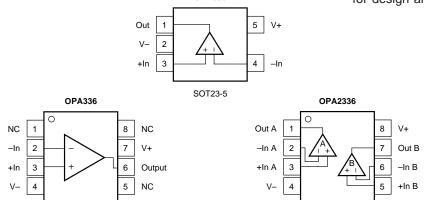
SBOS068C - JANUARY 1997 - REVISED JANUARY 2005

SINGLE-SUPPLY, microPower CMOS OPERATIONAL AMPLIFIERS microAmplifier™ Series

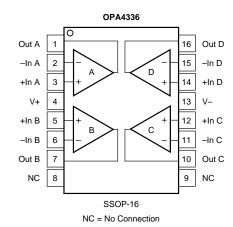
FEATURES

- SINGLE-SUPPLY OPERATION
- RAIL-TO-RAIL OUTPUT (within 3mV)
- microPOWER: I_O = 20μA/Amplifier
- microSIZE PACKAGES
- LOW OFFSET VOLTAGE: 125µV max
- SPECIFIED FROM V_S = 2.3V to 5.5V
- SINGLE, DUAL, AND QUAD VERSIONS

APPLICATIONS


- BATTERY-POWERED INSTRUMENTS
- PORTABLE DEVICES
- HIGH-IMPEDANCE APPLICATIONS
- PHOTODIODE PRE-AMPS
- PRECISION INTEGRATORS
- MEDICAL INSTRUMENTS
- TEST EQUIPMENT

DESCRIPTION


OPA336 series *micro*Power CMOS operational amplifiers are designed for battery-powered applications. They operate on a single supply with operation as low as 2.1V. The output is rail-to-rail and swings to within 3mV of the supplies with a $100 k\Omega$ load. The common-mode range extends to the negative supply—ideal for single-supply applications. Single, dual, and quad versions have identical specifications for maximum design flexibility.

In addition to small size and low quiescent current ($20\mu A/amplifier$), they feature low offset voltage ($125\mu V$ max), low input bias current (1pA), and high open-loop gain (115dB). Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction.

OPA336 packages are the tiny SOT23-5 surface mount and SO-8 surface-mount. OPA2336 come in the miniature MSOP-8 surface-mount, SO-8 surface-mount, and DIP-8 packages. The OPA4336 package is the space-saving SSOP-16 surface-mount. All are specified from -40°C to +85°C and operate from -55°C to +125°C. A macromodel is available for download (at www.ti.com) for design analysis.

OPA336

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

DIP-8, SO-8, MSOP-8

SO-8

NC = No Connection

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	PACKAGE-LEAD	PACKAGE DRAWING DESIGNATOR	PACKAGE MARKING
	T AGINGE LEAD	DEGIGNATOR	MARRINO
Single OPA336N	SOT23-5	DBV	A36 ⁽²⁾
OPA336NA	SOT23-5	DBV	A36 ⁽²⁾
OPA336NJ	SOT23-5	DBV	J36
OPA336U	SO-8 Surface-Mount	D D	OPA336U
OPA336UA	SO-8 Surface-Mount	D	OPA336UA
OPA336UJ	SO-8 Surface-Mount	D	OPA336UJ
Dual			
OPA2336E	MSOP-8 Surface-Mount	DGK	B36 ⁽²⁾
OPA2336EA	MSOP-8 Surface-Mount	DGK	B36 ⁽²⁾
OPA2336P	DIP-8	Р	OPA2336P
OPA2336PA	DIP-8	Р	OPA2336PA
OPA2336U	SO-8 Surface-Mount	D	OPA2336U
OPA2336UA	SO-8 Surface-Mount	D	OPA2336UA
Quad			
OPA4336EA	SSOP-16 Surface-Mount	DBQ	OPA4336EA

NOTES: (1) For the most current package and ordering information, see the package option addendum at the end of this data sheet. (2) Grade will be marked on the Reel.

ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage	7.5V
Signal Input Terminals, Voltage(2)	(V-) -0.3V to (V+) +0.3V
Current ⁽²⁾	10mA
Output Short-Circuit(3)	Continuous
Operating Temperature	55°C to +125°C
Storage Temperature	55°C to +125°C
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	300°C
ESD Rating:	
Charged Device Model, OPA336 NJ and	d UJ only (CDM) ⁽⁴⁾ 1000V
Human Body Model (HBM)(4)	500V
Machine Model (MM) ⁽⁴⁾	100V

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only. Functional operation of the device at these conditions, or beyond the specified operating conditions, is not implied. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less. (3) Short-circuit to ground, one amplifier per package. (4) OPA336 NJ and UJ have been tested to CDM of 1000V. All other previous package versions have been tested using HBM and MM. Results are shown.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

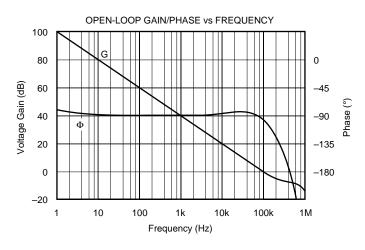
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

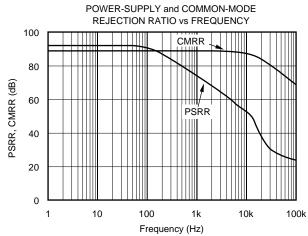
ELECTRICAL CHARACTERISTICS: $V_S = 2.3V$ to 5.5V

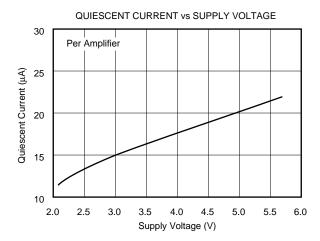
Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

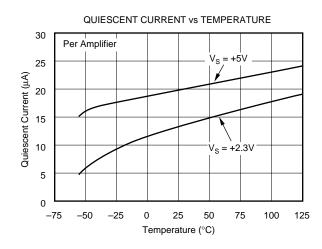
At T_A = +25°C, V_S = +5V, and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

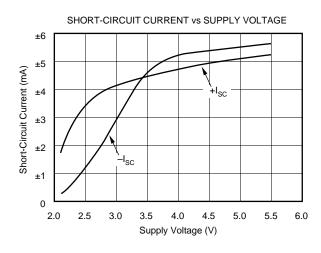
			OPA336N, U OPA2336E, P, U		OPA336NA, UA OPA2336EA, PA, UA OPA4336EA		OPA336NJ, UJ				
PARAMETER	CONDITION	MIN	TYP ⁽¹⁾	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Vos vs Temperature dV _{OS} /dT vs Power Supply PSRR Over Temperature Channel Separation, dc	$V_S = 2.3V \text{ to } 5.5V$ $V_S = 2.3V \text{ to } 5.5V$		±60 ± 1.5 25 0.1	±125		* *	±500 * *	*	±500 * *	±2500 * *	μV μ V/°C μV/V μ V/V μV/V
INPUT BIAS CURRENT Input Bias Current IB Over Temperature Input Offset Current Ios			±1	±10 ± 60 ±10		*	* *		*	* *	рА рА рА
			3 40 30			* *			* * *		μVp-p nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range V _{CM} Common-Mode Rejection Ratio CMRR Over Temperature	$-0.2V < V_{CM} < (V+) -1V$ $-0.2V < V_{CM} < (V+) -1V$	-0.2 80 76	90	(V+) -1	* 76 74	86	*	* 76 74	86	*	V dB dB
INPUT IMPEDANCE Differential Common-Mode			10 ¹³ 2 10 ¹³ 4			*			*		$\Omega \parallel pF$ $\Omega \parallel pF$
OPEN-LOOP GAIN Open-Loop Voltage Gain A _{OL} Over Temperature Over Temperature	$\begin{aligned} R_L &= 25k\Omega, 100\text{mV} < V_O < (V+) - 100\text{mV} \\ R_L &= 25k\Omega, 100\text{mV} < V_O < (V+) - 100\text{mV} \\ R_L &= 5k\Omega, 500\text{mV} < V_O < (V+) - 500\text{mV} \\ R_L &= 5k\Omega, 500\text{mV} < V_O < (V+) - 500\text{mV} \end{aligned}$	100 100 90 90	115 106		90 90 *	*		90 90 *	*		dB dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate SR Overload Recovery Time	$V_S = 5V, G = 1$ $V_S = 5V, G = 1$ $V_{IN} \bullet G = V_S$		100 0.03 100		,	* * *			* *		kHz V/μs μs
OUTPUT Voltage Output Swing from Rail ⁽²⁾ Over Temperature Over Temperature Short-Circuit Current I _{SC}	$\begin{split} R_L &= 100k\Omega,\ A_{OL} \geq 70dB \\ R_L &= 25k\Omega,\ A_{OL} \geq 90dB \\ R_L &= 25k\Omega,\ A_{OL} \geq 90dB \\ R_L &= 5k\Omega,\ A_{OL} \geq 90dB \\ R_L &= 5k\Omega,\ A_{OL} \geq 90dB \end{split}$		3 20 70 ±5	100 100 500 500		* * *	* * *		* * *	* * *	mV mV mV mV mA
Capacitive Load Drive C _{LOAD} POWER SUPPLY Specified Voltage Range V _S Minimum Operating Voltage		2.3	See Text	5.5	*	*	*	*	*	*	pF V V
Quiescent Current (per amplifier) I _Q Over Temperature	I _O = 0 I _O = 0		20	32 36		*	*		23	38 42	μ Α μ Α
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance θ _{JA}		-40 -55 -55		+85 +125 +125	* * *		* *	* * *		* * *	°C °C °C
SOT-23-5 Surface-Mount MSOP-8 Surface-Mount SO-8 Surface-Mount DIP-8 SSOP-16 Surface-Mount DIP-14			200 150 150 100 100 80			* * * * *			*		°C/W °C/W °C/W °C/W °C/W

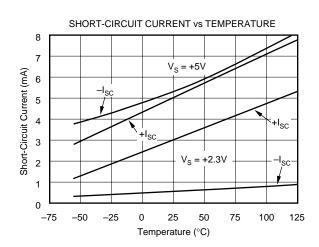

^{*}Specifications same as OPA2336E, P, U.

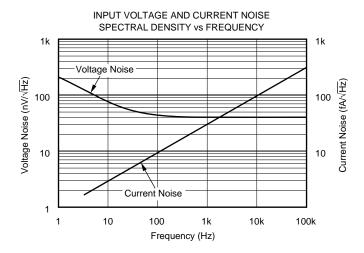

NOTES: (1) $V_S = +5V$. (2) Output voltage swings are measured between the output and positive and negative power-supply rails.

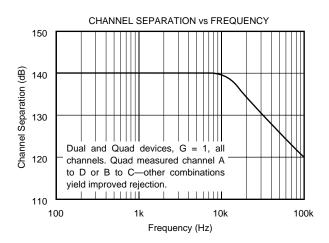


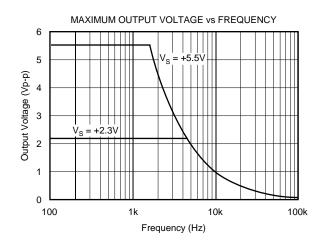

TYPICAL CHARACTERISTICS

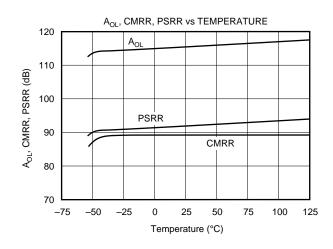

At T_A = +25°C, V_S = +5V, and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

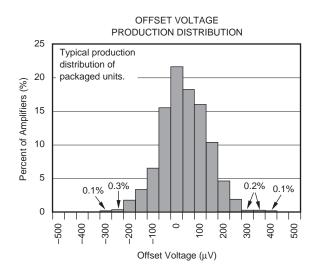


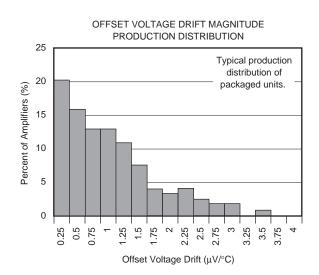


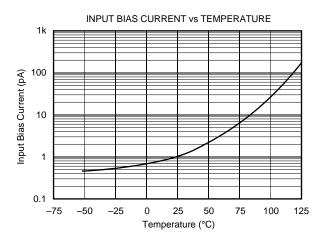


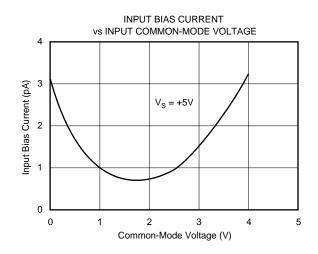


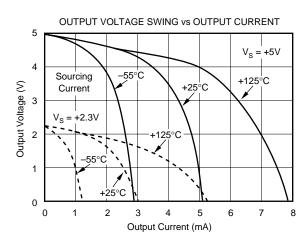

TYPICAL CHARACTERISTICS (Cont.)

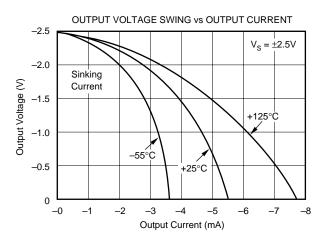

At T_A = +25°C, V_S = +5V, and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

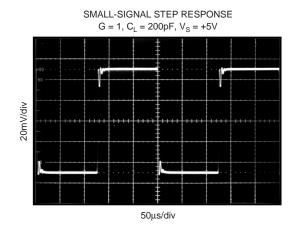


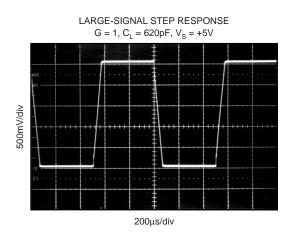







TYPICAL CHARACTERISTICS (Cont.)


At T_A = +25°C, V_S = +5V, and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.



APPLICATIONS INFORMATION

OPA336 series op amps are fabricated on a state-of-the-art 0.6 micron CMOS process. They are unity-gain stable and suitable for a wide range of general-purpose applications. Power-supply pins should be bypassed with $0.01\mu F$ ceramic capacitors. OPA336 series op amps are protected against reverse battery voltages.

OPERATING VOLTAGE

OPA336 series op amps can operate from a +2.1V to +5.5V single supply with excellent performance. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in the typical characteristics. OPA336 series op amps are fully specified for operation from +2.3V to +5.5V; a single limit applies over the supply range. In addition, many parameters are ensured over the specified temperature range, -40°C to +85°C.

INPUT VOLTAGE

The input common-mode range of OPA336 series op amps extends from (V-) – 0.2V to (V+) – 1V. For normal operation, inputs should be limited to this range. The absolute maximum input voltage is 300mV beyond the supplies. Thus, inputs greater than the input common-mode range but less than maximum input voltage, while not valid, will not cause any damage to the op amp. Furthermore, the inputs may go beyond the power supplies without phase inversion, as shown in Figure 1, unlike some other op amps.

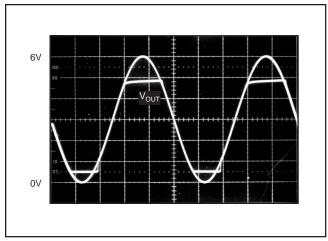


FIGURE 1. No Phase Inversion with Inputs Greater than the Power-Supply Voltage.

Normally, input bias current is approximately 1pA. However, input voltages exceeding the power supplies can cause excessive current to flow in or out of the input pins. Momentary voltages greater than the power supply can be tolerated as long as the current on the input pins is limited to 10mA. This is easily accomplished with an input resistor, as shown in Figure 2.

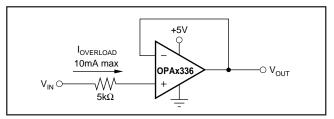


FIGURE 2. Input Current Protection for Voltages Exceeding the Supply Voltage.

CAPACITIVE LOAD AND STABILITY

OPA336 series op amps can drive a wide range of capacitive loads. However, all op amps under certain conditions may become unstable. Op-amp configuration, gain, and load value are just a few of the factors to consider when determining stability.

When properly configured, OPA336 series op amps can drive approximately 10,000pF. An op amp in unity-gain configuration is the most vulnerable to capacitive load. The capacitive load reacts with the op amp's output resistance, along with any additional load resistance, to create a pole in the response which degrades the phase margin. In unity gain, OPA336 series op amps perform well with a pure capacitive load up to about 300pF. Increasing gain enhances the amplifier's ability to drive loads beyond this level.

One method of improving capacitive load drive in the unity-gain configuration is to insert a 50Ω to 100Ω resistor inside the feedback loop, as shown in Figure 3. This reduces ringing with large capacitive loads while maintaining DC

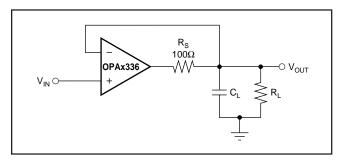


FIGURE 3. Series Resistor in Unity-Gain Configuration Improves Capacitive Load Drive.

accuracy. For example, with $R_L = 25 k\Omega$, OPA336 series op amps perform well with capacitive loads in excess of 1000pF, as shown in Figure 4. Without R_S , capacitive load drive is typically 350pF for these conditions, as shown in Figure 5.

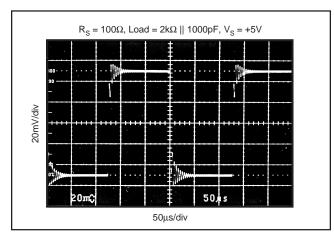


FIGURE 4. Small-Signal Step Response Using Series Resistor to Improve Capacitive Load Drive.

Alternatively, the resistor may be connected in series with the output outside of the feedback loop. However, if there is a resistive load parallel to the capacitive load, it and the series resistor create a voltage divider. This introduces a Direct Current (DC) error at the output; however, this error may be insignificant. For instance, with $R_L=100k\Omega$ and $R_S=100\Omega$, there is only about a 0.1% error at the output.

Figure 5 shows the recommended operating regions for the OPA336. Decreasing the load resistance generally improves capacitive load drive. Figure 5 also illustrates how stability differs depending on where the resistive load is connected. With G=+1 and $R_L=10k\Omega$ connected to $V_S/2$, the OPA336 can typically drive 500pF. Connecting the same load to ground improves capacitive load drive to 1000pF.

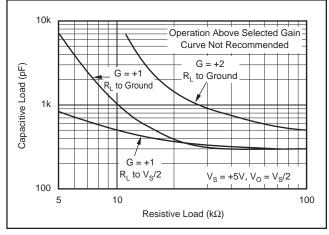


FIGURE 5. Stability—Capacitive Load vs Resistive Load.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
OPA2336E/250	ACTIVE	MSOP	DGK	8	250	None	CU NIPDAU	Level-1-235C-UNLIM
OPA2336E/2K5	ACTIVE	MSOP	DGK	8	2500	None	CU NIPDAU	Level-1-235C-UNLIM
OPA2336EA/250	ACTIVE	MSOP	DGK	8	250	None	CU NIPDAU	Level-1-235C-UNLIM
OPA2336EA/2K5	ACTIVE	MSOP	DGK	8	2500	None	CU NIPDAU	Level-1-235C-UNLIM
OPA2336EA/2K5G4	PREVIEW	MSOP	DGK	8	2500	None	Call TI	Call TI
OPA2336P	ACTIVE	PDIP	Р	8	50	None	Call TI	Level-NA-NA-NA
OPA2336PA	ACTIVE	PDIP	Р	8	50	None	Call TI	Level-NA-NA-NA
OPA2336U	ACTIVE	SOIC	D	8	100	None	CU SNPB	Level-2-220C-1 YEAR
OPA2336U/2K5	ACTIVE	SOIC	D	8	2500	None	CU NIPDAU	Level-2-220C-1 YEAR
OPA2336UA	ACTIVE	SOIC	D	8	100	None	CU SNPB	Level-2-220C-1 YEAR
OPA2336UA/2K5	ACTIVE	SOIC	D	8	2500	None	CU SNPB	Level-2-220C-1 YEAR
OPA2336UA/2K5G4	PREVIEW	SOIC	D	8	2500	None	Call TI	Call TI
OPA336N/250	ACTIVE	SOT-23	DBV	5	250	None	CU NIPDAU	Level-1-235C-UNLIM
OPA336N/3K	ACTIVE	SOT-23	DBV	5	3000	None	CU NIPDAU	Level-1-235C-UNLIM
OPA336NA/250	ACTIVE	SOT-23	DBV	5	250	None	CU NIPDAU	Level-1-235C-UNLIM
OPA336NA/3K	ACTIVE	SOT-23	DBV	5	3000	None	CU NIPDAU	Level-1-235C-UNLIM
OPA336NJ/250	ACTIVE	SOT-23	DBV	5	250	None	CU NIPDAU	Level-3-220C-168 HR
OPA336NJ/3K	ACTIVE	SOT-23	DBV	5	3000	None	CU NIPDAU	Level-3-220C-168 HR
OPA336P	OBSOLETE	PDIP	Р	8		None	Call TI	Call TI
OPA336PA	OBSOLETE	PDIP	Р	8		None	Call TI	Call TI
OPA336U	ACTIVE	SOIC	D	8	100	None	CU SNPB	Level-2-220C-1 YEAR
OPA336U/2K5	ACTIVE	SOIC	D	8	2500	None	CU SNPB	Level-2-220C-1 YEAR
OPA336UA	ACTIVE	SOIC	D	8	100	None	CU SNPB	Level-2-220C-1 YEAR
OPA336UA/2K5	ACTIVE	SOIC	D	8	2500	None	CU SNPB	Level-2-220C-1 YEAR
OPA4336EA/250	ACTIVE	SSOP/ QSOP	DBQ	16	250	None	CU NIPDAU	Level-3-240C-168 HR
OPA4336EA/2K5	ACTIVE	SSOP/ QSOP	DBQ	16	2500	None	CU NIPDAU	Level-3-240C-168 HR
OPA4336EA/2K5G4	PREVIEW	SSOP/ QSOP	DBQ	16	2500	None	Call TI	Call TI
OPA4336PA	OBSOLETE	PDIP	N	14		None	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

None: Not yet available Lead (Pb-Free).

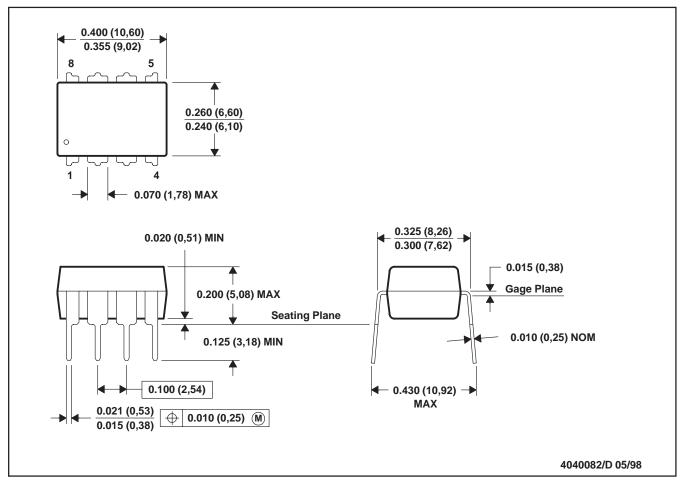
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

8-Mar-2005


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

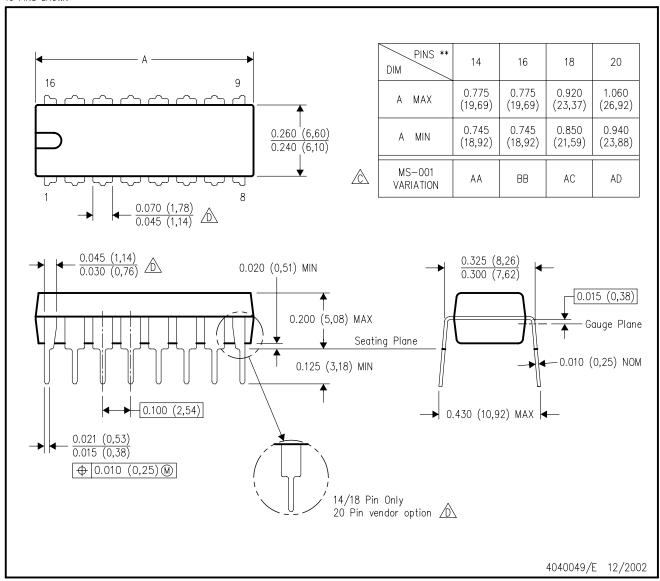
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

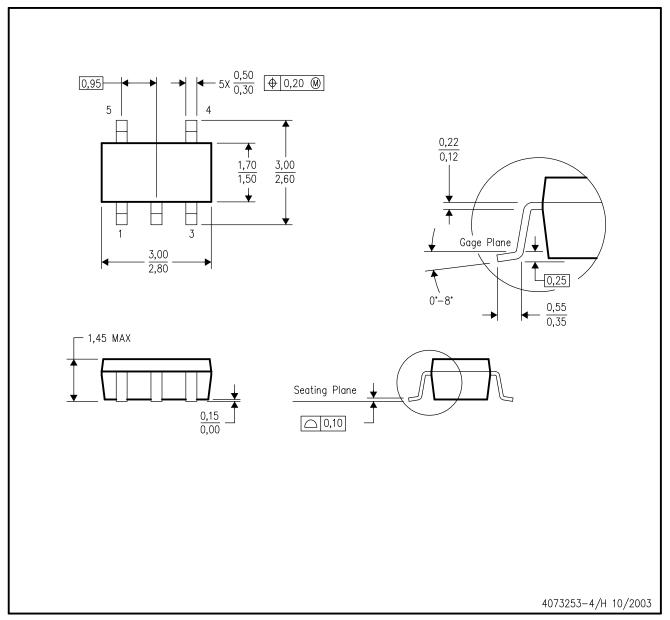

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

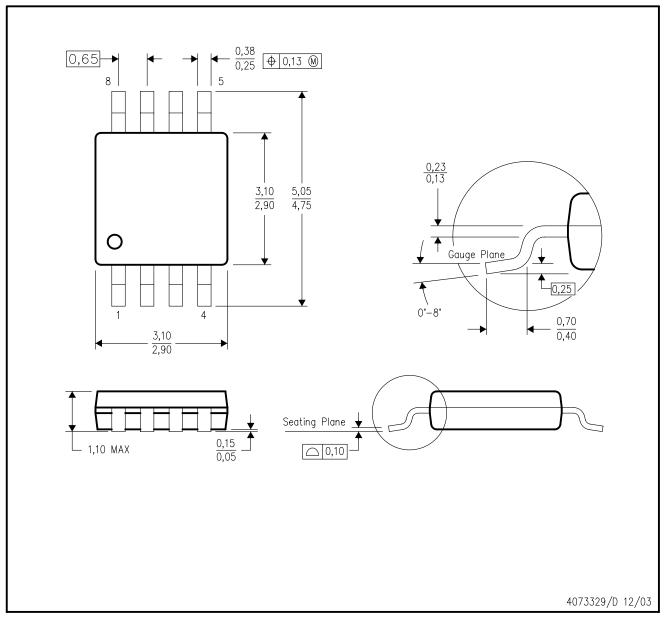
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DBV (R-PDSO-G5)

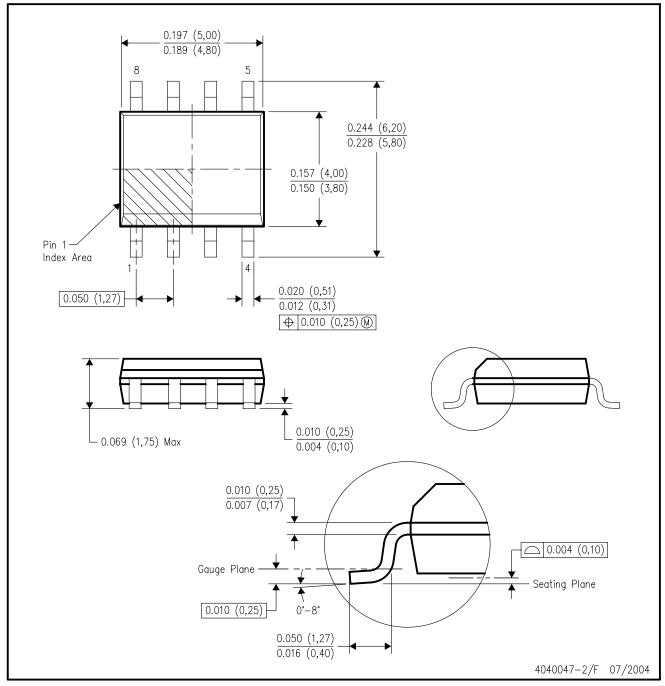
PLASTIC SMALL-OUTLINE PACKAGE



- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- C. Body dimensions do not include mold fla D. Falls within JEDEC MO—178 Variation AA. Body dimensions do not include mold flash or protrusion.

DGK (S-PDSO-G8)

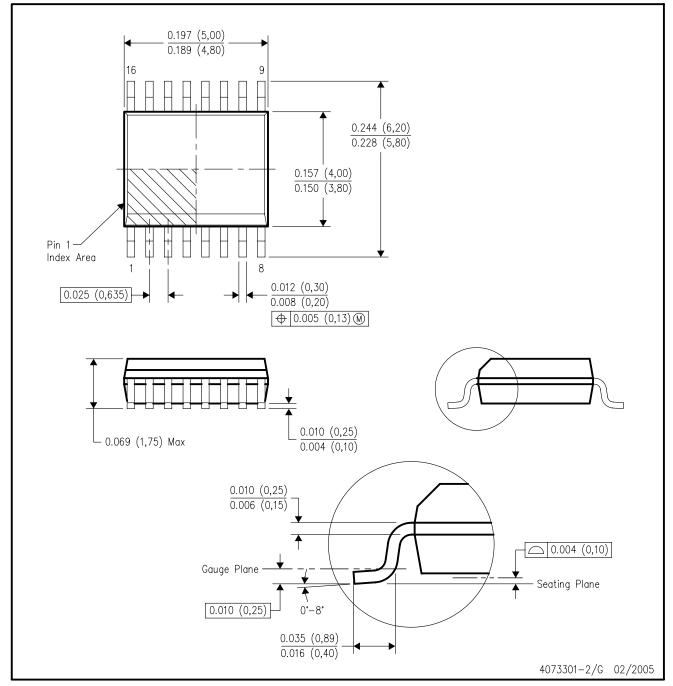
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated