200MHz, CMOS OPERATIONAL AMPLIFIER

FEATURES

- UNITY-GAIN BANDWIDTH: 450MHz
- WIDE BANDWIDTH: 200MHz GBW
- HIGH SLEW RATE: 360V/ $\mu \mathrm{s}$
- LOW NOISE: $5.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- EXCELLENT VIDEO PERFORMANCE:

DIFF GAIN: 0.02\%, DIFF PHASE: 0.05°
0.1dB GAIN FLATNESS: 75MHz

- INPUT RANGE INCLUDES GROUND
- RAIL-TO-RAIL OUTPUT (within 100 mV)
- LOW INPUT BIAS CURRENT: 3pA
- THERMAL SHUTDOWN
- SINGLE-SUPPLY OPERATING RANGE: 2.5V to 5.5V
- MicroSIZE PACKAGES

APPLICATIONS

- VIDEO PROCESSING
- ULTRASOUND
- OPTICAL NETWORKING, TUNABLE LASERS
- PHOTODIODE TRANSIMPEDANCE AMPS
- ACTIVE FILTERS
- HIGH-SPEED INTEGRATORS
- ANALOG-TO-DIGITAL (A/D) CONVERTER INPUT BUFFERS
- DIGITAL-TO-ANALOG (D/A) CONVERTER OUTPUT AMPLIFIERS
- BARCODE SCANNERS
- COMMUNICATIONS

DESCRIPTION

The OPAx356 series high-speed, voltage-feedback CMOS operational amplifiers are designed for video and other applications requiring wide bandwidth. The OPA×356 is unity gain stable and can drive large output currents. Differential gain is 0.02% and differential phase is 0.05°. Quiescent current is only 8.3 mA per channel.

OPAx356 is optimized for operation on single or dual supplies as low as $2.5 \mathrm{~V}(\pm 1.25 \mathrm{~V})$ and up to $5.5 \mathrm{~V}(\pm 2.75 \mathrm{~V})$. Common-mode input range for the OPAx356 extends 100 mV below ground and up to 1.5 V from $\mathrm{V}+$. The output swing is within 100 mV of the rails, supporting wide dynamic range.
The OPAx356 series is available in single (SOT23-5 and SO-8), and dual (MSOP-8 and SO-8) versions. Multichannel versions feature completely independent circuitry for lowest crosstalk and freedom from interaction. All are specified over the extended $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.

OPAx356 RELATED PRODUCTS

FEATURES	PRODUCT
200 MHz, Rail-to-Rail Output, CMOS, Shutdown	OPAx355
38 MHz, Rail-to-Rail Input/Output, CMOS	OPAx350
75 MHz, Rail-to-Rail Output	OPAx631
150 MHz, Rail-to-Rail Output	OPAx634
Differential Input/Output, 3.3V Supply	THS412x

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply Voltage, V+ to V- ... 7.5V	
Signal Input Terminals, Voltage ${ }^{(2)}$ \qquad $(\mathrm{V}-)-0.5 \mathrm{~V}$ to $(\mathrm{V}+)+0.5 \mathrm{~V}$ Current ${ }^{(2)}$ \qquad 10 mA	
Output Short-Circuit ${ }^{(3)}$	Continuous
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	- $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$\ldots+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$\ldots ~+300^{\circ} \mathrm{C}$

NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current limited to 10 mA or less. (3) Short-circuit to ground one amplifier per package.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR ${ }^{(1)}$	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ${ }^{(2)}$	TRANSPORT MEDIA, QUANTITY
OPA356AIDBV	$\begin{aligned} & \text { SOT23-5 } \\ & \hline \text { " } \end{aligned}$	DBV	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	OAAI	OPA356AIDBVT OPA356AIDBVR	Tape and Reel, 250 Tape and Reel, 3000
OPA356AID "	SO-8	D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	OPA356A	OPA356AID OPA356AIDR	Rails, 100 Tape and Reel, 2500
OPA2356AIDGK II	MSOP-8	DGK	$-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	AYI	OPA2356AIDGKT OPA2356AIDGKR	Tape and Reel, 250 Tape and Reel, 2500
OPA2356AID	SO-8	D	$-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	OPA2356A	OPA2356AID OPA2356AIDR	Rails, 100 Tape and Reel, 2500

NOTES: (1) For the most current specifications and package information, refer to our web site at www.ti.com. (2) Models labeled with " T " indicate smaller quantity tape and reel, " R " indicates large quantity tape and reel and " D " indicates rails of specified quantity.

PIN CONFIGURATIONS

Top View

NOTE: (1) NC means no internal connection.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}$ to +5.5 V Single Supply

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
At $T_{A}=+25^{\circ} \mathrm{C}, R_{F}=604 \Omega, R_{L}=150 \Omega$, Connected to $V_{S} / 2$, unless otherwise noted.

PARAMETER	CONDITION	OPA356AIDBV, AID, OPA2356AIDGK, AID			UNITS		
		MIN	TYP	MAX			
OFFSET VOLTAGE Input Offset Voltage	$V_{S}=+5 \mathrm{~V}$ Specified Temperature Range Specified Temperature Range $\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V} \text { to }+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2-0.15 \mathrm{~V}$		$\begin{gathered} \pm 2 \\ \\ \pm 7 \\ \pm 80 \end{gathered}$	$\begin{gathered} \pm 9 \\ \pm 15 \\ \\ \pm 350 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \end{gathered}$		
INPUT BIAS CURRENT Input Bias Current Input Offset Current			$\begin{gathered} 3 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \pm 50 \\ & \pm 50 \end{aligned}$	pA pA		
NOISE	$\begin{aligned} & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \end{aligned}$		$\begin{array}{r} 5.8 \\ 50 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{fA} / \sqrt{\mathrm{Hz}} \end{aligned}$		
INPUT VOLTAGE RANGE	$\mathrm{V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+4.0 \mathrm{~V}$ Specified Temperature Range	$\begin{gathered} (\mathrm{V}-)-0.1 \\ 66 \\ 66 \end{gathered}$	80	(V+)-1.5	V dB dB		
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 10^{13}\| \| 1.5 \\ & 10^{13}\| \| 1.5 \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN OPA356 OPA2356	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, 0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, 0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, 0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 84 \\ & 80 \\ & 80 \end{aligned}$	92		dB dB dB		
FREQUENCY RESPONSE Settling Time, 0.1\% 0.01% Overload Recovery Time Harmonic Distortion $2^{\text {nd }}$ Harmonic $3^{\text {rd }}$ Harmonic Differential Gain Error Differential Phase Error Channel-to-Channel Crosstalk OPA2356			450 100 170 200 200 75 $300 /-360$ 2.4 8 30 120 8 -81 -93 0.02 0.05 -90		```MHz MHz MHz MHz MHz MHz V/\mus ns ns ns ns ns dBc dBc % degrees dB```		
OUTPUT Voltage Output Swing from Rail Voltage Output Swing from Rail Voltage Output Swing from Rail Ouput Current, Continuous ${ }^{(1)}$ Maximum Output Current, Peak ${ }^{(1)}$ Maximum Output Current, Peak ${ }^{(1)}$ Short Circuit Current Closed-Loop Output Impedance	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~A}_{\mathrm{OL}}>84 \mathrm{~dB} \\ \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \mathrm{I}_{\mathrm{O}}= \pm 100 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=+3 \mathrm{~V} \\ \mathrm{f}<100 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \pm 60 \\ \pm 100 \end{gathered}$	$\begin{gathered} 0.2 \\ 0.1 \\ 0.8 \\ \\ \\ \pm 80 \\ +250 /-200 \\ 0.02 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \Omega \end{gathered}$		
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier)	$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$ Specified Temperature Range	2.7	$\begin{gathered} 2.5 \text { to } 5.5 \\ 8.3 \end{gathered}$	$\begin{gathered} 5.5 \\ 11 \\ 14 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$		

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}$ to $\mathbf{+ 5 . 5 \mathrm { V } \text { Single Supply (Cont.) }}$

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
At $T_{A}=+25^{\circ} \mathrm{C}, R_{F}=604 \Omega, R_{L}=150 \Omega$, Connected to $V_{S} / 2$, unless otherwise noted.

	CONDITION	OPA356AIDBV, AID, OPA2356AIDGK, AID			UNITS
PARAMETER		MIN	TYP	MAX	
THERMAL SHUTDOWN					
Junction Temperature					
Shutdown			160		${ }^{\circ} \mathrm{C}$
Reset from Shutdown			140		${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE					
Specified Range		-40		125	${ }^{\circ} \mathrm{C}$
Operating Range		-55		150	${ }^{\circ} \mathrm{C}$
Storage Range		-65		150	${ }^{\circ} \mathrm{C}$
Thermal Resistance θ_{JA}					${ }^{\circ} \mathrm{C} / \mathrm{w}$
SOT23-5, MSOP-8			150		${ }^{\circ} \mathrm{C} / \mathrm{W}$
SO-8			125		${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES: (1) See typical characteristic "Output Voltage Swing vs Output Current".

TYPICAL CHARACTERISTICS

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{F}}=604 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

NON-INVERTING SMALL-SIGNAL
STEP RESPONSE

Time (20ns/div)

INVERTING SMALL-SIGNAL
FREQUENCY RESPONSE

NON-INVERTING LARGE-SIGNAL STEP RESPONSE

Time (20ns/div)

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{F}}=604 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{F}}=604 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

COMMON-MODE REJECTION RATIO AND POWER-SUPPLY REJECTION RATIO vs FREQUENCY

COMPOSITE VIDEO
DIFFERENTIAL GAIN AND PHASE

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{F}}=604 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{F}}=604 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

APPLICATIONS INFORMATION

The OPAx356 series is a CMOS, high-speed, voltage feedback, operational amplifier designed for video and other general-purpose applications. It is available as a single or dual op amp.
The amplifier features a 200 MHz gain bandwidth and $360 \mathrm{~V} / \mu \mathrm{s}$ slew rate, but it is unity-gain stable and can be operated as a $+1 \mathrm{~V} / \mathrm{V}$ voltage follower.
Its input common-mode voltage range includes ground, allowing the OPAx356 to be used in virtually any single-supply application up to a supply voltage of +5.5 V .

PCB LAYOUT

Good high-frequency PC board layout techniques should be employed for the OPAx356. Generous use of ground planes, short direct signal traces, and a suitable bypass capacitor located at the $V+$ pin will assure clean, stable operation. Large areas of copper also provide a means of dissipating heat that is generated within the amplifier in normal operation.
Sockets are definitely not recommended for use with any high-speed amplifier.
A $10 \mu \mathrm{~F}$ ceramic bypass capacitor is the minimum recommended value; adding a $1 \mu \mathrm{~F}$ or larger tantalum capacitor in parallel can be beneficial when driving a low-resistance load. Providing adequate bypass capacitance is essential to achieving very low harmonic and intermodulation distortion.

OPERATING VOLTAGE

The OPAx356 is specified over a power-supply range of +2.7 V to $+5.5 \mathrm{~V}(\pm 1.35$ to $\pm 2.75 \mathrm{~V})$. However, the supply voltage may range from +2.5 V to $+5.5 \mathrm{~V}(\pm 1.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V})$. Supply voltages higher than 7.5 V (absolute maximum) can permanently damage the amplifier.

Parameters that vary significantly over supply voltage or temperature are shown in the "Typical Characteristics" section of this data sheet.

OUTPUT DRIVE

The OPAx356 output stage is capable of driving a standard back-terminated 75Ω video cable. By back-terminating a transmission line, it does not exhibit a capacitive load to its driver. A properly back-terminated 75Ω cable does not appear as capacitance; it presents only a 150Ω resistive load to the OPAx356 output.
The output stage can supply high short-circuit current (typically over 200 mA). Therefore, an on-chip thermal shutdown circuit is provided to protect the OPAx356 from dangerously high junction temperatures. At $160^{\circ} \mathrm{C}$, the protection circuit will shut down the amplifier. Normal operation will resume when the junction temperature cools to below $140^{\circ} \mathrm{C}$.
NOTE: It is not recommended to run a continuous DC current in excess of $\pm 60 \mathrm{~mA}$. Refer to the graph of "Output Voltage Swing vs Output Current", shown in the "Typical Characteristics" section of this data sheet.

INPUT AND ESD PROTECTION

All OPAx356 pins are static protected with internal ESD protection diodes tied to the supplies, as shown in Figure 1. These diodes will provide overdrive protection if the current is externally limited to 10 mA by the source or by a resistor.

FIGURE 1. Internal ESD Protection.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-178

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-187

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

