

SN65HVD3082E,SN75HVD3082E SN65HVD3085E,SN65HVD3088E

SLLS562C - MARCH 2003 - REVISED - JUNE 2004

LOW-POWER RS-485 TRANSCEIVER

Available in Small MSOP-8 Package

FEATURES

- Available in Small MSOP-8 Package
- Meets or Exceeds the Requirements of the TIA/EIA-485A Standard
- Low Quiescent Power
 - 0.3 mA Active Mode
 - 1 nA Shutdown Mode
- 1/8 Unit Load—Up to 256 Nodes on a Bus
- Bus-Pin ESD Protection Up to 15 kV
- Industry-Standard SN75176 Footprint
- Failsafe Receiver (Bus Open, Bus Shorted, Bus Idle)

APPLICATIONS

- Energy Meter Networks
- Motor Control
- Power Inverters
- Industrial Automation
- Building Automation Networks
- Battery-Powered Applications
- Telecommunications Equipment

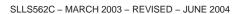
DESCRIPTION

These devices are half-duplex transceivers designed for RS-485 data bus networks. Powered by a 5-V supply, they are fully compliant with TIA/EIA-485A standard. With controlled transition times, these devices are suitable for transmitting data over long twisted-pair cables. SN65HVD3082E and SN75HVD3082E devices are optimized for signaling rates up to 200 kbps. SN65HVD3085E is suitable for data transmission up to 1 Mbps, whereas SN65HVD3088E is suitable for applications requiring signaling rates up to 20 Mbps. These devices are designed to operate with very low supply current, typically 0.3 mA, exclusive of the load. When in the inactive shutdown mode, the supply current drops to a few nanoamps, making these devices ideal for power-sensitive applications.

The wide common-mode range and high ESD protection levels of these devices make them suitable for demanding applications such as energy meter networks, electrical inverters, status/command signals across telecom racks, cabled chassis interconnects, and industrial automation networks where noise tolerance is essential. These devices match the industry-standard footprint of SN75176. Power-on reset circuits keep the outputs in a high-impedance state until the supply voltage has stabilized. A thermal shutdown function protects the device from damage due to system fault conditions. The SN75HVD3082E is characterized for operation from 0°C to 70°C and SN65HVD308xE are characterized for operation from -40°C to 85°C air temperature.

ORDERING INFORMATION

_	SIGNALING RATE		PACKAGE TYPE					
TA	(Mbps)	Р	D(1)	DGK(2)				
0°C to 70°C	0.2	SN75HVD3082EP Marked as 75HVD3082	SN75HVD3082ED Marked as VN3082	SN75HVD3082EDGK Marked as NWM				
	0.2	SN65HVD3082EP Marked as 65HVD3082	SN65HVD3082ED Marked as VP3082	SN65HVD3082EDGK Marked as NWN				
-40°C to 85°C	1		SN65HVD3085ED Marked as VP3085	SN65HVD3085EDGK Marked as NWK				
	20		SN65HVD3088ED Marked as VP3088	SN65HVD3088EDGK Marked as NWH				


⁽¹⁾ The D package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD3082EDR).

⁽²⁾ The DGK package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD3082EDGKR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65HVD3082E,SN75HVD3082E SN65HVD3085E,SN65HVD3088E

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1) (2)

	UNITS
Supply voltage range, V _{CC}	–0.5 V to 7 V
Voltage range at A or B	−9 V to 14 V
Voltage range at any logic pin	-0.3 V to V _{CC} + 0.3 V
Receiver output current	–24 mA to 24 mA
Voltage input range, transient pulse, A and B, through 100 Ω (see Figure 13)	−50 V to 50 V
Junction temperature, T _J	170°C
Continuous total power dissipation	Refer to Package Dissipation Table

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

PACKAGE DISSIPATION RATINGS

PACKAGE	JEDEC BOARD MODEL	T _A <25°C POWER RATING	DERATING FACTOR ⁽³⁾ ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
	Low k(1)	507 mW	4.82 mW/°C	289 mW	217 mW
D	High k ⁽²⁾	824 mW	7.85 mW/°C	471 mW	353 mW
Р	Low k(1)	686 mW	6.53 mW/°C	392 mW	294 mW
DOK	Low k(1)	394 mW	3.76 mW/°C	255 mW	169 mW
DGK	High k(2)	583 mW	5.55 mW/°C	333 mW	250 mW

⁽¹⁾ In accordance with the low-k thermal metric definitions of EIA/JESD51-3

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽²⁾ In accordance with the high-k thermal metric definitions of EIA/JESDS1-7

⁽³⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

RECOMMENDED OPERATING CONDITIONS(1)

		MIN	TYP	MAX	UNIT
Supply voltage, V _{CC}		4.5		5.5	V
Input voltage at any bus terminal (se	parately or common mode), V _I	-7		12	V
High-level input voltage (D, DE, or R	<u>=</u> E inputs), V _{IH}	2		VCC	V
Low-level input voltage (D, DE, or RI	inputs), V _{IL}	0		0.8	V
Differential input voltage, V _{ID}		-12		12	V
Output summed I	Driver	-60		60	A
Output current, IO	Receiver	-8		8	mA
Differential load resistance, RL		54	60		Ω
	SN65HVD3082E, SN75HVD3082E			0.2	
Signaling rate, 1/tul	SN65HVD3085E			1	Mbps
	SN65HVD3088E			20	
On another form a sintension of the	SN65HVD3082E, SN65HVD3085E, SN65HVD3088E	-40	-40 85		00
Operating free–air temperature, T _A	SN75HVD3082E	0		70	°C
Junction temperature, T _J (2)	•	-40		130	°C

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.

SUPPLY CURRENT

over recommended operating conditions unless otherwise noted

PARAMETER		TEST CONDITIONS	MIN	TYP (1)	MAX	UNIT
	Driver and receiver enabled	D at V _{CC} or open, DE at V _{CC} , RE at 0 V, No load		425	900	μΑ
laa	Driver enabled, receiver disabled	D at V _{CC} or open, DE at V _{CC} , RE at V _{CC} , No load		330	600	μΑ
ICC	Receiver enabled, driver disabled	D at V _{CC} or open, DE at 0 V, RE at 0 V, No load		300	600	μΑ
	Driver and receiver disabled	D at V _{CC} or open, DE at 0 V, RE at V _{CC}		0.001	2	μΑ

⁽¹⁾ All typical values are at 25°C and with a 5-V supply.

ELECTROSTATIC DISCHARGE PROTECTION

PARAMETER	TEST CONDITIONS	MIN TYP(1) MAX	UNIT
Human body model	Bus terminals and GND	±15	kV
Human body model ⁽²⁾	All pins	±4	kV
Charged-device-mode(3)	All pins	±1	kV

⁽¹⁾ All typical values at 25°C

⁽²⁾ See thermal characteristics table for information on maintenance of this specification for the DGK package.

⁽²⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-A.
(3) Tested in accordance with JEDEC Standard 22, Test Method C101.

SN65HVD3082E,SN75HVD3082E SN65HVD3085E,SN65HVD3088E

SLLS562C - MARCH 2003 - REVISED - JUNE 2004

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
		I _O = 0, No load	3	4.3			
	Differential autority alterna	R_L = 54 Ω, See Figure 1	1.5	2.3		.,	
MODI	Differential output voltage	R _L = 100 Ω	2			V	
		V _{TEST} = -7 V to 12 V, See Figure 2	1.5				
ΔVODI	Change in magnitude of differential output voltage	See Figure 1 and Figure 2	-0.2	0	0.2	V	
VOC(SS)	Steady-state common-mode output voltage	San Figure 2	1	2.6	3	.,	
ΔVOC(SS)	Change in steady-state common-mode output voltage	See Figure 3	-0.1	0	0.1	V	
VOC(PP)		See Figure 3		500		mV	
loz	High-impedance output current	See receiver input currents					
lį	Input current	D, DE	-100		100	μΑ	
los	Short-circuit output current	$-7 \text{ V} \le \text{V}_{O} \le 12 \text{ V}$, See Figure 7	-250		250	mA	

⁽¹⁾ All typical values are at 25°C and with a 5V-supply.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		$R_1 = 54 \Omega$	HVD3082E		700	1300	
^t PLH ^t PHL	Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output	$C_{L} = 50 \text{ pF},$	HVD3085E		150	500	ns
, FIL	r ropagation aday time, riight to low lover output	See Figure 4	HVD3088E		12	20	
	Pifferential autoritation distribution		HVD3082E	500	900	1500	
t _r t _f	Differential output signal rise time Differential output signal fall time	$C_{L} = 50 \text{ pF},$	HVD3085E		200	300	ns
7	Sillororidar odipat digitar fair timo	See Figure 4	HVD3088E		7	15	
	Pulse skew (tpHL - tpLH)	$R_1 = 54 \Omega$	HVD3082E		20	200	ns
tsk(p)		C _L = 50 pF, See Figure 4	HVD3085E		5	50	
,			HVD3088E		1.4	5	
		$R_L = 110 \Omega$	HVD3082E		2500	7000	
tPZH	Propagation delay time, high-impedance-to-high-level output	RE at 0 V, See Figure 5	HVD3085E		1000	2500	ns
^t PZL	Propagation delay time, high-impedance-to-low-level output	and Figure 6	HVD3088E		13	30	
		$R_L = 110 \Omega$	HVD3082E		80	200	
tPHZ	Propagation delay time, high-level-to-high-impedance output	RE at 0 V, See Figure 5	HVD3085E		60	100	ns
IPLZ	^t PLZ Propagation delay time, low-level-to-high-impedance output	and Figure 6	HVD3088E		12	30	
	Propagation delay time, chutdown to high lovel output	R _L = 110 Ω, RE	HVD3082E		3500	7000	
tpzi (SHDN)	Propagation delay time, shutdown-to-high-level output	at V _{CC} ,	HVD3085E		2500	4500	ns
[†] PZL(SHDN)	Propagation delay time, shutdown-to-low-level output	See Figure 5	HVD3088E		1600	2600	

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP (1)	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$I_O = -8 \text{ mA}$		-85	-10	mV
V _{IT} _	Negative-going input threshold voltage	$I_O = 8 \text{ mA}$	-200	-115		mV
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT-})			30		mV
Vон	High-level output voltage	V_{ID} = 200 mV, I_{OH} = -8 mA, See Figure 8	4	4.6		V
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV}$, $I_{OH} = 8 \text{ mA}$, See Figure 8		0.15	0.4	V
loz	High-impedance-state output current	$V_O = 0$ to V_{CC} , $\overline{RE} = V_{CC}$	-1		1	μΑ
		V _{IH} = 12 V, V _{CC} = 5 V		0.04	0.1	
	Due input summer	V _{IH} = 12 V, V _{CC} = 0		0.06	0.125	A
וי	Bus input current	$V_{IH} = -7 \text{ V}, V_{CC} = 5 \text{ V}$	-0.1	-0.04		mA
		$V_{IH} = -7 \text{ V}, V_{CC} = 0$	-0.05	-0.03		
lн	High-level input current (RE)	V _{IH} = 2 V	-60	-30		μΑ
I _I L	Low-level input current (RE)	V _{IL} = 0.8 V	-60	-30		μΑ
C _{diff}	Differential input capacitance	$V_I = 0.4 \sin (4E6\pi t) + 0.5 V$, DE at 0 V		7		pF

⁽¹⁾ All typical values are at 25°C and with a 5-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST COI	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output		HVD3082E HVD3085E		75	200	ns
			HVD3088E			100	
^t PHL	Propagation delay time, high-to-low-level output	$R_L = 54 \Omega$, $C_L = 15 pF$,	HVD3082E HVD3085E		79	200	ns
		See Figure 9	HVD3088E			100	
^t sk(p)	Pulse skew (tpHL - tpLH)		HVD3082E HVD3085E		4	30	ns
o(p)			HVD3088E			10	
t _r	Output signal rise time	$V_{ID} = -1.5 \text{ V to}$	1.5 V,		1.5	3	ns
t _f	Output signal fall time	C _L = 15 pF, See Figure 9			1.8	3	ns
^t PZH	Output enable time to high level		HVD3082E HVD3085E		5	50	ns
			HVD3088E			30	
^t PZL	Output enable time to low level	C _I = 15 pF,	HVD3082E HVD3085E		10	50	ns
		DE at 3 V,	HVD3088E			30	
^t PHZ	Output enable time from high level	See Figure 10 and Figure 11	HVD3082E HVD3085E		5	50	ns
	·		HVD3088E			30	
[†] PLZ	Output enable time from low level		HVD3082E HVD3085E		8	50	ns
. —	•		HVD3088E			30	
^t PZH(SHDN)	Propagation delay time, shutdown-to-high-level output	C _L = 15 pF, DE at 0 V, See Figure 12			1600	3500	ns
tPZL(SHDN)	Propagation delay time, shutdown-to-low-level output				1700	3500	ns

PARAMETER MEASUREMENT INFORMATION

NOTE: Test load capacitance includes probe and jig capacitance (unless otherwise specified). Signal generator characteristics: rise and fall time < 6 ns, pulse rate 100 kHz, 50% duty cycle. $Z_O = 50 \Omega$ (unless otherwise specified).

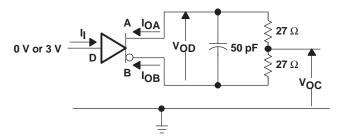


Figure 1. Driver Test Circuit, VOD and VOC Without Common-Mode Loading

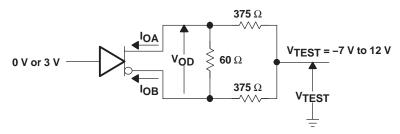


Figure 2. Driver Test Circuit, V_{OD} With Common-Mode Loading

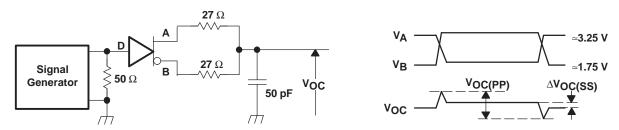


Figure 3. Driver V_{OC} Test Circuit and Waveforms

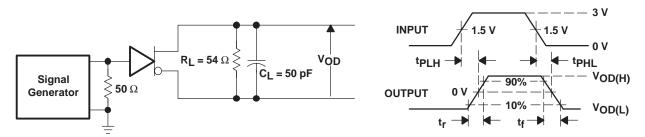


Figure 4. Driver Switching Test Circuit and Waveforms

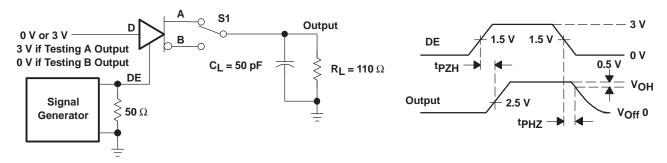


Figure 5. Driver Enable/Disable Test Circuit and Waveforms, High Output

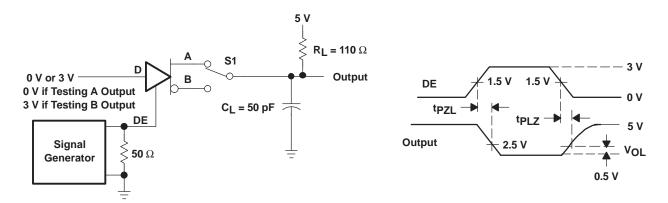


Figure 6. Driver Enable/Disable Test Circuit and Waveforms, Low Output

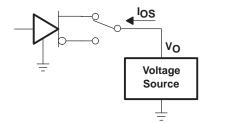


Figure 7. Driver Short-Circuit Test

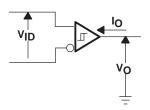


Figure 8. Receiver Parameter Definitions

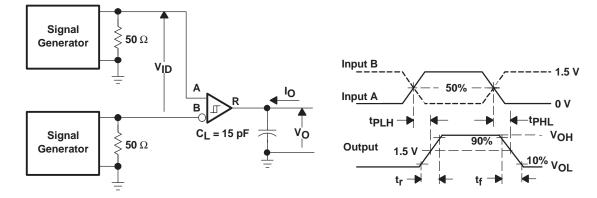


Figure 9. Receiver Switching Test Circuit and Waveforms

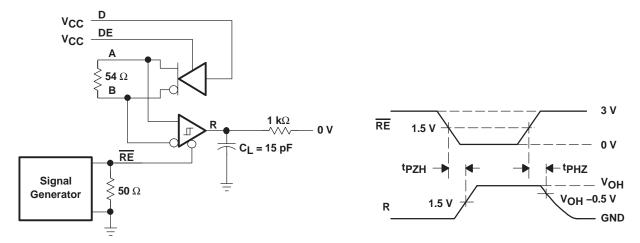


Figure 10. Receiver Enable/Disable Test Circuit and Waveforms, Data Output High

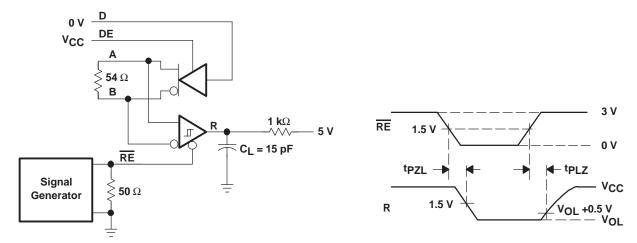


Figure 11. Receiver Enable/Disable Test Circuit and Waveforms, Data Output Low

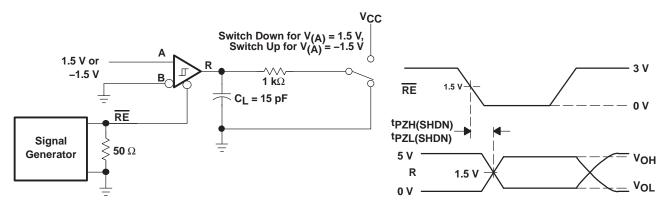
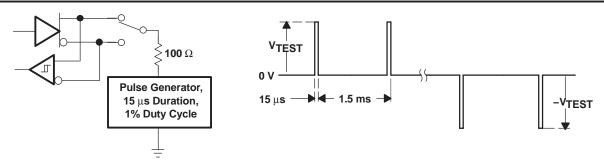
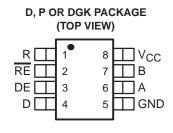
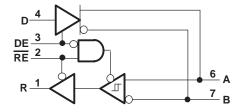


Figure 12. Receiver Enable From Shutdown Test Circuit and Waveforms


Figure 13. Test Circuit and Waveforms, Transient Over-Voltage Test

DEVICE INFORMATION

PIN ASSIGNMENTS

LOGIC DIAGRAM (POSITIVE LOGIC)

FUNCTION TABLE

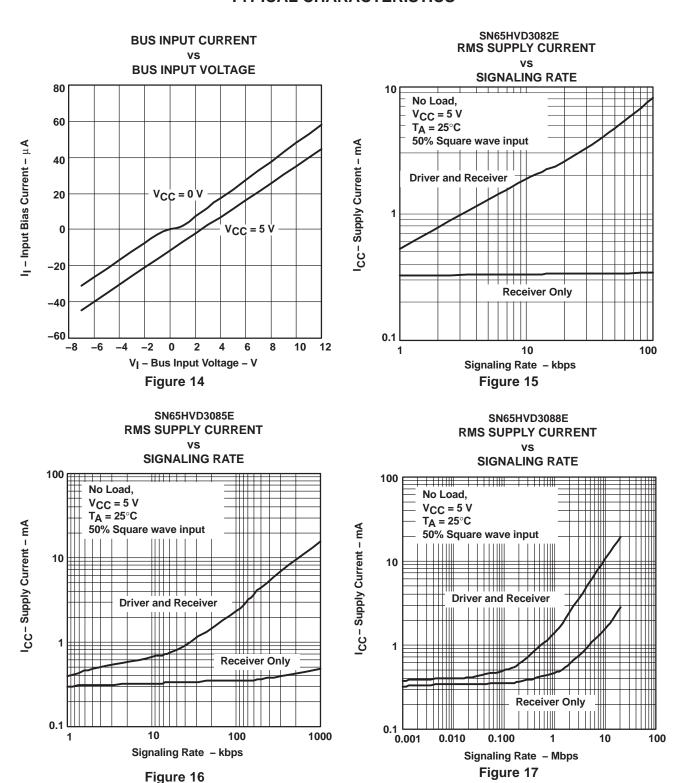
	DRI	VER		RECEIVER		
INPUT	ENABLE	OUTI	PUTS	DIFFERENTIAL INPUTS	ENABLE	OUTPUT
D	DE	Α	В	$V_{ID} = V_A - V_B$	RE	R
Н	Н	Н	L	V _{ID} ≤ -0.2 V	L	L
L	Н	L	Н	-0.2 V < V _{ID} < -0.01 V	L	?
Х	L	Z	Z	-0.01 V ≤ V _{ID}	L	Н
Open	Н	Н	L	X	Н	Z
Х	Open	Z	Z	Open circuit	L	Н
		_		Short circuit	L	Н
				X	Open	Z

NOTE: H= high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

DGK Package

THERMAL CHARACTERISTICS


	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	h	Low-k ⁽²⁾ board, no air flow			266		0000
ΘЈΑ	Junction-to-ambient thermal resistance(1)	High-k ⁽³⁾ board, no air flow			180		°C/W
ΘЈВ	Junction-to-board thermal resistance	High-k ⁽³⁾ board, no air flow			108		00.004
ΘЈС	Junction-to-case thermal resistance				66		°C/W
P _(AVG)	Average power dissipation	R_L = 54 Ω , Input to D is a 200 kbps 50% duty cycle square wave V_{CC} at 5.5 V, T_J = 130°C	HVD3082E			203	mW
P(AVG)	Average power dissipation	R _L = 54 Ω , Input to D is a 1 Mbps 50% duty cycle square wave V _{CC} at 5.5 V, T _J = 130°C	HVD3085E			205	mW
P(AVG)	Average power dissipation	R _L = 54 Ω , Input to D is a 20 Mbps 50% duty cycle square wave V _{CC} at 5.5 V, T _J = 130°C	HVD3088E			276	mW
т.	A selected air to see a seture	High k board model		-40		93	00
TA	Ambient air temperature	Low k board model		-40		75	°C
T _{SD}	Thermal shut-down junction temperature				165		°C

⁽¹⁾ See TI application note literature number SZZA003, Package Thermal Characterization Methodologies, for an explanation of this parameter.

⁽²⁾ JESD51-3 Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages (3) JESD51-7 High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

DRIVER DIFFERENTIAL OUTPUT VOLTAGE

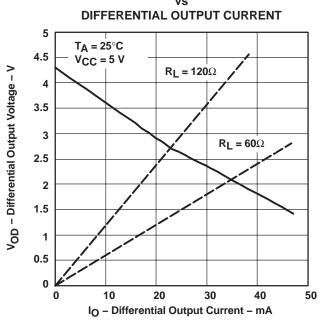


Figure 18

RECEIVER OUTPUT VOLTAGE **DIFFERENTIAL INPUT VOLTAGE** T_A = 25°C 4.5 V_{CC} = 5 V V_{IC} = 0.75 V

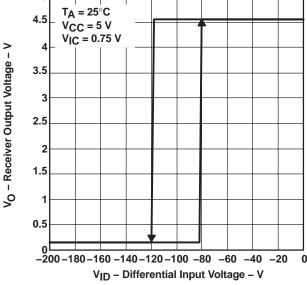
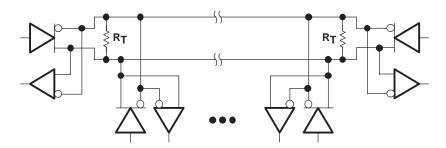



Figure 19

APPLICATION INFORMATION

NOTE: The line should be terminated at both ends with its characteristic impedance ($R_T = Z_O$). Stub lengths off the main line should be kept as short as possible.

Figure 20. Typical Application Circuit

POWER USAGE IN AN RS-485 TRANSCEIVER

Power consumption is a concern in many applications. Power supply current is delivered to the bus load as well as to the transceiver circuitry. For a typical RS-485 bus configuration, the load that an active driver must drive consists of all of the receiving nodes, plus the termination resistors at each end of the bus.

The load presented by the receiving nodes depends on the input impedance of the receiver. The TIA/EIA-485-A standard defines a unit load as allowing up to 1 mA. With up to 32 unit loads allowed on the bus, the total current supplied to all receivers can be as high as 32 mA. The HVD308xE is rated as a 1/8 unit load device. As shown in Figure 14, the bus input current is less than 1/8 mA, allowing up to 256 nodes on a single bus.

The current in the termination resistors depends on the differential bus voltage. The standard requires active drivers to produce at least 1.5 V of differential signal. For a bus terminated with one standard 120- Ω resistor at each end, this sums to 25 mA differential output current whenever the bus is active. Typically the HVD308xE can drive more than 25 mA to a 60 Ω load, resulting in a differential output voltage higher than the minimum required by the standard. (See Figure 16.)

Overall, the total load current can be 60 mA to a loaded RS-485 bus. This is in addition to the current required by the transceiver itself; the HVD308xE circuitry requires only about 0.4 mA with both driver and receiver enabled, and only 0.3 mA with either the driver enabled or with the receiver enabled. In low-power shutdown mode, neither the driver nor receiver is active, and the supply current is very low.

Supply current increases with signaling rate primarily due to the totum pole outputs of the driver (see Figure 15). When these outputs change state, there is a moment when both the high-side and low-side output transistors are conducting and this creates a short spike in the supply current. As the frequency of state changes increases, more power is used.

LOW-POWER SHUTDOWN MODE

When both the driver and receiver are disabled (DE low and \overline{RE} high) the device is in shutdown mode. If the enable inputs are in this state for less than 60 ns, the device does not enter shutdown mode. This guards against inadvertently entering shutdown mode during driver/receiver enabling. Only when the enable inputs are held in this state for 300 ns or more, the device is assured to be in shutdown mode. In this low-power shutdown mode, most internal circuitry is powered down, and the supply current is typically 1 nA. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.

If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after the enable times given by $t_{PZH(SHDN)}$ and $t_{PZL(SHDN)}$ in the driver switching characteristics. If the D input is open when the driver is enabled, the driver outputs defaults to A high and B low, in accordance with the driver failsafe feature.

If only the receiver is re-enabled (\overline{RE} transitions to low) the receiver output is driven according to the state of the bus inputs (A and B) after the enable times given by $t_{PZH(SHDN)}$ and $t_{PZL(SHDN)}$ in the receiver switching characteristics. If there is no valid state on the bus the receiver responds as described in the failsafe operation section.

If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver outputs are valid.

THERMAL CHARACTERISTICS OF IC PACKAGES

 Θ_{JA} (Junction-to-Ambient Thermal Resistance) is defined as the difference in junction temperature to ambient temperature divided by the operating power

 Θ_{JA} is NOT a constant and is a strong function of

- the PCB design (50% variation)
- altitude (20% variation)
- device power (5% variation)

 Θ_{JA} can be used to compare the thermal performance of packages if the specific test conditions are defined and used. Standardized testing includes specification of PCB construction, test chamber volume, sensor locations, and the thermal characteristics of holding fixtures. Θ_{JA} is often misused when it is used to calculate junction temperatures for other installations.

TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives *average* in-use condition thermal performance and consists of a single trace layer 25 mm long and 2-oz thick copper. The high-k board gives *best case* in–use condition and consists of two 1-oz buried power planes with a single trace layer 25 mm long with 2-oz thick copper. A 4% to 50% difference in Θ_{JA} can be measured between these two test cards

 Θ_{JC} (Junction-to-Case Thermal Resistance) is defined as difference in junction temperature to case divided by the operating power. It is measured by putting the mounted package up against a copper block cold plate to force heat to flow from die, through the mold compound into the copper block.

 Θ_{JC} is a useful thermal characteristic when a heatsink is applied to package. It is NOT a useful characteristic to predict junction temperature as it provides pessimistic numbers if the case temperature is measured in a non-standard system and junction temperatures are backed out. It can be used with Θ_{JB} in 1-dimensional thermal simulation of a package system.

 Θ_{JB} (Junction-to-Board Thermal Resistance) is defined to be the difference in the junction temperature and the PCB temperature at the center of the package (closest to the die) when the PCB is clamped in a cold–plate structure. Θ_{JB} is only defined for the high-k test card.

 Θ_{JB} provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal resistance (especially for BGA's with thermal balls) and can be used for simple 1-dimensional network analysis of package system (see Figure 21).

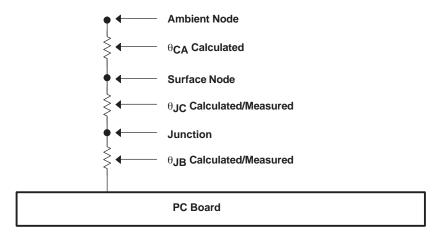


Figure 21. Thermal Resistance

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
SN65HVD3082ED	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN65HVD3082EDGK	ACTIVE	MSOP	DGK	8	100	None	CU NIPDAU	Level-1-220C-UNLIM
SN65HVD3082EDGKR	ACTIVE	MSOP	DGK	8	2500	None	CU NIPDAU	Level-1-220C-UNLIM
SN65HVD3082EDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN65HVD3082EP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN65HVD3085ED	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN65HVD3085EDGK	ACTIVE	MSOP	DGK	8	100	None	CU NIPDAU	Level-1-220C-UNLIM
SN65HVD3085EDGKR	ACTIVE	MSOP	DGK	8	2500	None	CU NIPDAU	Level-1-220C-UNLIM
SN65HVD3085EDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN65HVD3088ED	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN65HVD3088EDGK	ACTIVE	MSOP	DGK	8	100	None	CU NIPDAU	Level-1-220C-UNLIM
SN65HVD3088EDGKR	ACTIVE	MSOP	DGK	8	2500	None	CU NIPDAU	Level-1-220C-UNLIM
SN65HVD3088EDGKRG4	PREVIEW	MSOP	DGK	8	2500	None	Call TI	Call TI
SN65HVD3088EDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN75HVD3082ED	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN75HVD3082EDGK	ACTIVE	MSOP	DGK	8	100	None	CU NIPDAU	Level-1-220C-UNLIM
SN75HVD3082EDGKR	ACTIVE	MSOP	DGK	8	2500	None	CU NIPDAU	Level-1-220C-UNLIM
SN75HVD3082EDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN75HVD3082EP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

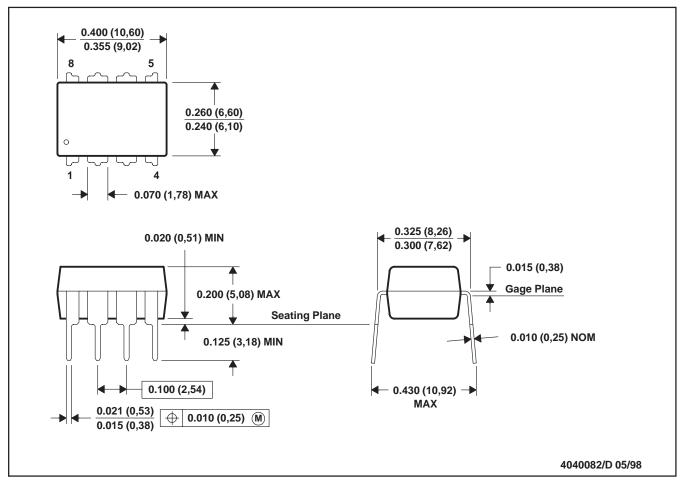
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

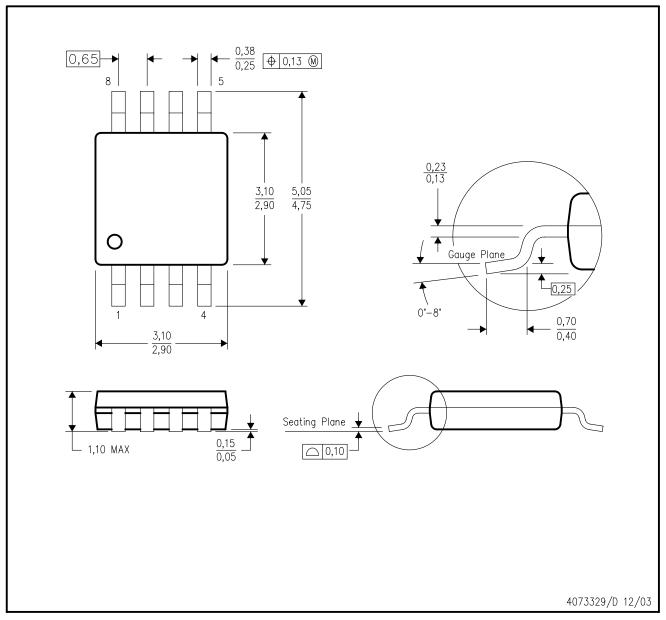

23-Feb-2005

provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

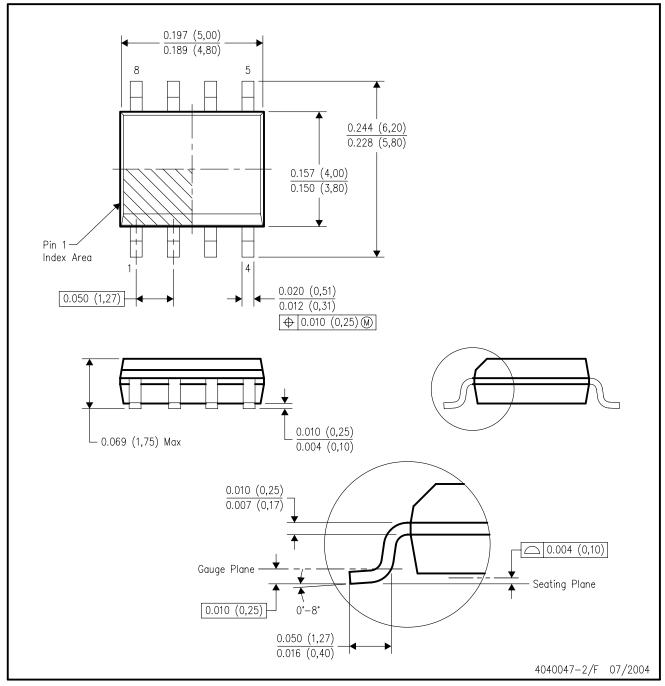

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated