SLLS376C-MAY 2000 - REVISED DECEMBER 2000

- High-Speed Low-Power LinBiCMOS ${ }^{\text {TM }}$ Circuitry Designed for Signaling Rates \dagger Up to 30 Mbps
- Bus-Pin ESD Protection Exceeds 12 kV HBM
- Compatible With ANSI Standard TIA/EIA-485-A and ISO 8482:1987(E)
- Low Skew
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Very Low Disabled Supply-Current Requirements . . . $700 \mu \mathrm{~A}$ Maximum
- Common Mode Voltage Range of -7 V to 12 V
- Thermal-Shutdown Protection
- Driver Positive and Negative Current Limiting
- Open-Circuit Fail-Safe Receiver Design
- Receiver Input Sensitivity ... $\pm \mathbf{2 0 0} \mathbf{m V}$ Max
- Receiver Input Hysteresis . . . 50 mV Typ
- Glitch-Free Power-Up and Power-Down Protection
- Available in Q-Temp Automotive High Reliability Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards

description

The SN65LBC176A, SN65LBC176AQ, and SN75LBC176A differential bus transceivers are monolithic, integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines. They are designed for balanced transmission lines and are compatible with ANSI standard TIA/EIA-485-A and ISO 8482. The A version offers improved switching performance over its predecessors without sacrificing significantly more power.

SN65LBC176AQD (Marked as B176AQ)
SN65LBC176AD (Marked as BL176A)
SN65LBC176AP (Marked as 65LBC176A)
SN75LBC176AD (Marked as LB176A)
SN75LBC176AP (Marked as 75LBC176A)
(TOP VIEW)

logic diagram (positive logic)

Function Tables DRIVER

INPUT	ENABLE	OUTPUTS	
\mathbf{D}	DE	A	B
H	H	H	L
L	H	L	H
X	L	Z	Z
Open	H	H	L

RECEIVER

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
$\mathbf{V}_{\mathbf{A}}-\mathbf{V}_{\mathbf{B}}$	$\overline{\mathbf{R E}}$	\mathbf{R}
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	L	H
$-0.2 \mathrm{~V}<\mathrm{V}_{\text {ID }}<0.2 \mathrm{~V}$	L	$?$
$\mathrm{~V}_{\text {ID }} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z
Open	L	H

H = high level, $\quad L=$ low level, $\quad ?=$ indeterminate,
X = irrelevant, $\quad Z=$ high impedance (off)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^0]
description (continued)

The SN65LBC176A, SN65LBC176AQ, and SN75LBC176A combine a 3-state, differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can externally connect together to function as a direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $\mathrm{V}_{\mathrm{CC}}=0$. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party-line applications. Very low device supply current can be achieved by disabling the driver and the receiver.

AVAILABLE OPTIONS

TA $_{\mathbf{A}}$	PACKAGE	
	SMALL OUTLINE (D)	PLASTIC DUAL-IN-LINE
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SN75LBC176AD	SN75LBC176AP
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SN65LBC176AD	SN65LBC176AP
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SN65LBC176AQD	-

schematics of inputs and outputs

SN65LBC176A, SN75LBC176A DIFFERENTIAL BUS TRANSCEIVERS

absolute maximum ratings ${ }^{\dagger}$

Voltage range at any bus terminal (A or B) ... 10 V to 15 V

Electrostatic discharge:Bus terminals and GND, Class 3, A: (see Note 2) 12 kV
Bus terminals and GND, Class 3, B: (see Note 2) 400 V
All terminals, Class 3, A: .. 4 kV
All terminals, Class 3, B: ... 400 V
Continuous total power dissipation (see Note 3) See Dissipation Rating Table
Storage temperature range, $\mathrm{T}_{\text {stg }} \ldots \ldots . ~ . ~ 65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.
2. The maximum operating junction temperature is internally limited. Use the dissipation rating table to operate below this temperature.
3. Tested in accordance with MIL-STD-883C, Method 3015.7

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW	145 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW	520 mW	-

\ddagger This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.75	5	5.25	V
Voltage at any bus terminal (separately or common mode), V_{1} or $\mathrm{V}_{\text {IC }}$		-7		12	V
High-level input voltage, V_{IH} (output recessive)	D, DE, and $\overline{\mathrm{RE}}$	2		V_{CC}	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (output dominant)	D, DE, and $\overline{\mathrm{RE}}$	0		0.8	V
Differential input voltage, $\mathrm{V}_{\text {ID }}$ (see Note 4)		-12§		12	V
High-level output current, IOH	Driver	-60			mA
	Receiver	-8			
Low-level output current, IOL	Driver			60	mA
	Receiver			8	
Operating free-air temperature, T_{A}	SN65LBC176AQ	-40		125	${ }^{\circ} \mathrm{C}$
	SN65LBC176A	-40		85	
	SN75LBC176A	0		70	

[^1]driver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP†	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	-0.8		V
$\left\|\mathrm{V}_{\text {OD }}\right\|$	Differential output voltage	$\mathrm{IO}=0$		SN65LBC176AQ	1.5	4	6	V
				$\begin{aligned} & \text { SN65LBC176A, } \\ & \text { SN75LBC176A } \end{aligned}$		4		
		$R_{L}=54 \Omega$,	See Figure 1	SN65LBC176AQ	0.9	1.5	6	
				SN65LBC176A	1	1.5	3	V
				SN75LBC176A	1.1	1.5	3	V
		$\mathrm{V}_{\text {test }}=-7 \mathrm{~V}$ to 12 V , See Figure 2		SN65LBC176AQ	0.9	1.5	6	
				SN65LBC176A	1	1.5	3	V
				SN75LBC176A	1.1	1.5	3	V
$\Delta \mathrm{V}_{\text {OD }}$ \|	Change in magnitude of differential output voltage	See Figures 1 and 2			-0.2		0.2	V
		See Figure 1		SN65LBC176AQ	1.8	2.4	3	V
VOC(SS)	Steady-state common-mode output voltage			$\begin{aligned} & \text { SN65LBC176A, } \\ & \text { SN75LBC176A } \end{aligned}$	1.8	2.4	2.8	
$\Delta \mathrm{VOC}(\mathrm{SS})$	Change in steady-state common-mode output voltage \dagger			SN65LBC176AQ	-0.2		0.2	
				$\begin{aligned} & \text { SN65LBC176A, } \\ & \text { SN75LBC176A } \end{aligned}$	-0.1		0.1	
loz	High-impedance output current	See receiver input currents						
${ }^{\text {IH }}$	High-level enable input current	$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$			-100			$\mu \mathrm{A}$
IIL	Low-level enable input current	$\mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$			-100			$\mu \mathrm{A}$
IOS	Short-circuit output current	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 12 \mathrm{~V}$			-250	± 70	250	mA
ICC	Supply current	$\mathrm{V}_{\mathrm{I}}=0 \text { or } \mathrm{V}_{\mathrm{CC}},$ No load	Receiver disabled and driver enabled			5	9	mA
			Receiver disabled and driver disabled			0.4	0.7	
			Receiver enabled and driver enabled			8.5	15	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
driver switching characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN65LBC176AQ		SN65LBC176ASN75LBC176A			UNIT	
		MIN	TYP \dagger MAX	MIN	TYP \dagger	MAX			
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=54 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$$\text { See Figure } 3$	2	12	2	6	12	ns
tPHL	Propagation delay time, high-to-low-level output	2		12	2	6	12	ns	
tsk(p)	Pulse skew (\| tPLH - tphl)			2		0.3	1	ns
tr_{r}	Differential output signal rise time	1.2		11	4	7.5	11	ns	
$\mathrm{tf}^{\text {f }}$	Differential output signal fall time	1.2		11	4	7.5	11	ns	
tPZH	Propagation delay time, high-impedance-to-highlevel output	$\mathrm{R}_{\mathrm{L}}=110 \Omega,$ See Figure 4		22		12	22	ns	
tPZL	Propagation delay time, high-impedance-to-lowlevel output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=110 \Omega, \\ & \text { See Figure } 5 \end{aligned}$		25		12	22	ns	
tPHZ	Propagation delay time, high-level-to-highimpedance output	$\mathrm{R}_{\mathrm{L}}=110 \Omega,$ See Figure 4		22		12	22	ns	
tPLZ	Propagation delay time, low-level-to-highimpedance output	$\begin{aligned} & R_{\mathrm{L}}=110 \Omega, \\ & \text { See Figure } 5 \end{aligned}$		22		12	22	ns	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN65LBC176A, SN75LBC176A DIFFERENTIAL BUS TRANSCEIVERS

SLLS376C- MAY 2000 - REVISED DECEMBER 2000
receiver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP \dagger	MAX	UNIT
$\mathrm{V}_{\text {IT }}+$	Positive-going input threshold voltage	$1 \mathrm{O}=-8 \mathrm{~mA}$					0.2	V
$\mathrm{V}_{\text {IT }}$	Negative-going input threshold voltage	$\mathrm{l}=8 \mathrm{~mA}$			-0.2			V
Vhys	Hysteresis voltage ($\mathrm{V}_{\text {IT }+}-\mathrm{V}_{\text {IT }-}$)				50			mV
$\mathrm{V}_{\text {IK }}$	Enable-input clamp voltage	$\mathrm{I}=-18 \mathrm{~mA}$			-1.5	-0.8		V
V_{OH}	High-level output voltage	$\mathrm{V}_{\text {ID }}=200 \mathrm{mV}$,	$\mathrm{I} \mathrm{OH}=-8 \mathrm{~mA}$,	See Figure 6	4	4.9		V
V OL	Low-level output voltage	$\mathrm{V}_{\text {ID }}=200 \mathrm{mV}$,	$\mathrm{IOL}=8 \mathrm{~mA}$,	See Figure 6		0.1	0.8	V
Ioz	High-impedance-state output current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}		SN65LBC176AQ	-10		10	$\mu \mathrm{A}$
				SN65LBC176A, SN75LBC176A	-1		1	
11	Bus input current	$\mathrm{V}_{\mathrm{IH}}=12 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	Other input at 0 V		0.4	1	mA
		$\mathrm{V}_{\mathrm{IH}}=12 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=0$			0.5	1	
		$\mathrm{V}_{\mathrm{IH}}=-7 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		-0.8	-0.4		
		$\mathrm{V}_{\mathrm{IH}}=-7 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=0$		-0.8	-0.3		
IIH	High-level enable-input current	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$			-100			$\mu \mathrm{A}$
IIL	Low-level enable-input current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$			-100			$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Supply current	$\begin{aligned} & V_{1}=0 \text { or } V_{C C}, \\ & \text { No load } \end{aligned}$	Receiver enabled and driver disabled			4	7	mA
			Receiver disabled and driver disabled			0.4	0.7	
			Receiver enabled and driver enabled			8.5	15	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
receiver switching characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN65LBC176AQ		SN65LBC176A SN75LBC176A			UNIT	
		MIN	TYP \dagger MAX	MIN	TYP \dagger	MAX			
tPLH	Propagation delay time, output \uparrow		$\mathrm{V}_{\mathrm{ID}}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V},$ See Figure 7	7	30	7	13	20	ns
tPHL	Propagation delay time, output \downarrow	7		30	7	13	20	ns	
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew (\| tPHL - tpLH)			6		0.5	1.5	ns
tr_{r}	Rise time, output	See Figure 7		5		2.1	3.3	ns	
$\mathrm{tf}^{\text {f }}$	Fall time, output			5		2.1	3.3	ns	
tPZH	Output enable time to high level	$C_{L}=10 \mathrm{pF},$ See Figure 8		50		30	45	ns	
tPZL	Output enable time to low level			50		30	45	ns	
tPHZ	Output disable time from high level			60		20	40	ns	
tplZ	Output disable time from low level			40		20	40	ns	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Figure 2. Driver V_{OD}

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty $\mathrm{cycle}, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 3. Driver Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 4. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 5. Driver Test Circuit and Voltage Waveforms

Figure 6. Receiver V_{OH} and V_{OL}

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 7. Receiver Test Circuit and Voltage Waveforms

VOLTAGE WAVEFORMS
NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty $\mathrm{cycle}, \mathrm{tr}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{tf}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 8. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 9. Typical Waveform of Non-Return-To-Zero (NRZ), Pseudorandom Binary Sequence (PRBS) Data at 100 Mbps Through 15m, of CAT 5 Unshielded Twisted Pair (UTP) Cable

TIA/EIA-485-A defines a maximum signaling rate as that in which the transition time of the voltage transition of a logic-state change remains less than or equal to 30% of the bit length. Transition times of greater length perform quite well even though they do not meet the standard by definition.

TYPICAL CHARACTERISTICS

Figure 10

Figure 12

LOGIC INPUT CURRENT vs InPut Voltage

Figure 11

LOW-LEVEL OUTPUT VOLTAGE
vS
LOW-LEVEL OUTPUT CURRENT

Figure 13

TYPICAL CHARACTERISTICS

Figure 14

RECEIVER PROPAGATION TIME
vs
CASE TEMPERATURE

Figure 16

DRIVER DIFFERENTIAL OUTPUT VOLTAGE
vs
AVERAGE CASE TEMPERATURE

Figure 15

DRIVER PROPAGATION DELAY TIME vs
CASE TEMPERATURE

Figure 17

TYPICAL CHARACTERISTICS

Figure 18

MECHANICAL INFORMATION

D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN

PINS **	$\mathbf{8}$	$\mathbf{1 4}$	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
A MIN	0.189 $(4,80)$	0.337 $(8,55)$	0.386 $(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

MECHANICAL INFORMATION

P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

[^0]: \dagger Signaling rate by TIA/EIA-485-A definition restrict transition times to 30% of the bit length, and much higher signaling rates may be achieved without this requirement as displayed in the TYPICAL CHARACTERISTICS of this device.
 LinBiCMOS and LinASIC are trademarks of Texas Instruments.

[^1]: \S The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet. NOTE 4: Differential input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B .

