- Qualification in Accordance With AEC-Q100 \dagger
- Qualified for Automotive Applications
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- C-Stable Amplifier Drives Any Capacitive Load
- High Speed
- 165 MHz Bandwidth (-3 dB); $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$
- 100 MHz Bandwidth (-3 dB); $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
- 35 MHz Bandwidth (-3 dB); $\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$
- $400 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
- Unity Gain Stable
- High Output Drive, $\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$ (typ)
- Low Distortion
$-\mathrm{THD}=-75 \mathrm{dBc}\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right)$
- $\mathrm{THD}=-89 \mathrm{dBc}\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right)$
- Wide Range of Power Supplies
$-\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Evaluation Module Available
\dagger Contact Texas Instruments for details. Q100 qualification data available on request.

THS4041
D PACKAGE
(TOP VIEW)

NC - No internal connection

OUTPUT AMPLITUDE

vs
FREQUENCY

description/ordering information

The THS4041 is a single, high-speed voltage feedback amplifier capable of driving any capacitive load. This makes it ideal for a wide range of applications including driving video lines or buffering ADCs. The device features high $165-\mathrm{MHz}$ bandwidth and $400-\mathrm{V} / \mu$ s slew rate. The THS4041 is stable at all gains for both inverting and noninverting configurations. For video applications, the THS4041 offers excellent video performance with 0.01% differential gain error and 0.01° differential phase error. This amplifier can drive up to 100 mA into a 20- Ω load and operate off power supplies ranging from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

ORDERING INFORMATION

TA	NUMBER OF CHANNELS	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	1	SOIC (D)	Tape and Reel	THS4041IDRQ1	$4041 Q 1$

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

CAUTION: The THS4041 provides ESD protection circuitry. However, permanent damage can still occur if this device is subjected to high-energy electrostatic discharges. Proper ESD precautions are recommended to avoid any performance degradation or loss of functionality.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Insruments Incorporated.

functional block diagram

Figure 1. THS4041 - Single Channel
absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

Supply voltage, V_{CC}	$\pm 16.5 \mathrm{~V}$
Input voltage, $\mathrm{V}_{\text {I }}$	$\pm \mathrm{V}_{\mathrm{CC}}$
Output current, Io	150 mA
Differential input voltage, V_{I}	$\pm 4 \mathrm{~V}$
Maximum junction temperature, T_{J} (see Figure 2)	$150^{\circ} \mathrm{C}$
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 1)	$215^{\circ} \mathrm{C} / \mathrm{W}$
Operating free-air temperature, T_{A} : 1 -suffix	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from case for	$300^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: This data was taken using the JEDEC standard Low-K test PCB. For the JEDEC proposed High-K test PCB, the $\theta \mathrm{JA}$ is $126^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 2. Estimated Wirebond Life

recommended operating conditions

		MIN	NOM	MAX	UNIT
	Dual supply	± 4.5		± 16	
Supply voltage, $\mathrm{V}_{\text {CC+ }}$ and VCC	Single supply	9		32	V
Operating free-air temperature, T_{A}	I-suffix	-40		85	${ }^{\circ} \mathrm{C}$

electrical characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ (unless otherwise noted) dynamic performance

PARAMETER		TEST CONDITIONS \dagger			MIN TYP	MAX	UNIT
BW	Dynamic performance small-signal bandwidth$(-3 \mathrm{~dB})$	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{f}}=200 \Omega$	Gain = 1	165		MHz
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{f}}=200 \Omega$		150		
		$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{f}}=1.3 \mathrm{k} \Omega$	Gain $=2$	60		MHz
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{f}}=1.3 \mathrm{k} \Omega$		60		
	Bandwidth for 0.1 dB flatness	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{f}}=200 \Omega$	Gain $=1$	45		MHz
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{f}}=200 \Omega$		45		
	Full power bandwidth§	$\mathrm{V}_{\mathrm{O}}(\mathrm{pp})=20 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$		6.3		MHz
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$		20		
SR	Slew rate \ddagger	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$,	20-V step,	Gain $=5$	400		V/us
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$,	5-V step,	Gain $=-1$	325		
$\mathrm{ts}_{\text {s }}$	Settling time to 0.1\%	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$,	5-V step	Gain $=-1$	120		ns
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$,	2-V step		120		
	Settling time to 0.01\%	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$,	5-V step	Gain $=-1$	250		ns
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$,	2-V step		280		

\dagger Full range $=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for I suffix
\ddagger Slew rate is measured from an output level range of 25% to 75%.
§ Full power bandwidth = slew rate $/ 2 \pi \mathrm{~V}_{\mathrm{O}}$ (Peak).
noise/distortion performance

	PARAMETER	TEST CONDITIONS \dagger			MIN TYP	MAX	UNIT
THD	Total harmonic distortion	$\begin{aligned} & V_{\mathrm{O}(\mathrm{pp})}=2 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}, \quad \text { Gain }=2 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	-75		dBc
				$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	-89		
			$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	-75		
				$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	-86		
V_{n}	Input voltage noise	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$,	$\mathrm{f}=10 \mathrm{kHz}$		14		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
In_{n}	Input current noise	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$,	$\mathrm{f}=10 \mathrm{kHz}$		0.9		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Differential gain error	Gain = 2, 40 IRE modulation,	NTSC, ± 100 IRE ramp	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	0.01\%		
				$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	0.01\%		
	Differential phase error	Gain = 2, 40 IRE modulation,	$\begin{aligned} & \text { NTSC, } \\ & \pm 100 \text { IRE ramp } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	$0.01{ }^{\circ}$		
				$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	$0.02{ }^{\circ}$		

[^0]electrical characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ (unless otherwise noted) (continued) dc performance

	PARAMETER	TEST CONDITIONS \dagger			MIN	TYP	MAX	UNIT
	Open loop gain	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	74	80		dB
				$\mathrm{T}_{\mathrm{A}}=$ full range	69			
		$\begin{aligned} & V_{C C}= \pm 5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=250 \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{O}}= \pm 2.5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	69	76		
				$\mathrm{T}_{\mathrm{A}}=$ full range	66			
VOS	Input offset voltage	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.5	10	mV
				T_{A} = full range			13	
	Offset voltage drift	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=$ full range		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input bias current	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.5	6	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=$ full range			8	
	Input offset current	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		35	250	nA
				T_{A} = full range			400	
	Offset current drift	T_{A} = full range				0.3		$n \mathrm{n} /{ }^{\circ} \mathrm{C}$

\dagger Full range $=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for I suffix
input characteristics

	PARAMETER	TEST CONDITIONS†			MIN	TYP	MAX	UNIT
VICR	Common-mode input voltage range	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V} \\ & \hline \mathrm{~V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} \end{aligned}$			± 13.8	± 14.3		V
					± 3.8	± 4.3		
CMRR Common mode rejection ratio		$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$,	$\mathrm{V}_{\text {ICR }}= \pm 12 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=$ full range	70	90		dB
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$,	$\mathrm{V}_{\text {ICR }}= \pm 2.5 \mathrm{~V}$		80	100		
ri	Input resistance					1		$\mathrm{M} \Omega$
C_{i}	Input capacitance					1.5		pF

\dagger Full range $=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for I suffix
electrical characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ (unless otherwise noted) (continued) output characteristics

	PARAMETER	TEST CONDITIONS \dagger		MIN	TYP	MAX	UNIT
V_{O}	Output voltage swing	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=250 \Omega$	± 11.5	± 13		V
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	± 3.2	± 3.5		
		$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	± 13	± 13.6		V
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$		± 3.5	± 3.8		
Io	Output current \ddagger	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	$R_{L}=20 \Omega$	80	100		mA
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$		50	65		
ISC	Short-circuit current \ddagger	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$			150		mA
RO	Output resistance	Open loop			13		Ω

\dagger Full range $=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for I suffix
\ddagger Observe power dissipation ratings to keep the junction temperature below the absolute maximum rating when the output is heavily loaded or shorted. See the absolute maximum ratings section of this data sheet for more information.
power supply

PARAMETER	TEST CONDITIONS \dagger		MIN	TYP	MAX	UNIT
Supply voltage operating range	Dual supply		± 4.5		± 16.5	V
	Single supply		9		33	
ICC Supply current (per amplifier)	$V_{C C}= \pm 15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8	9.5	mA
		$\mathrm{T}_{\mathrm{A}}=$ full range			11	
	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7	8.5	
		$\mathrm{T}_{\mathrm{A}}=$ full range	10			
Power supply rejection ratio	$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	75	84		dB
		T_{A} = full range	70			

\dagger Full range $=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for I suffix

TYPICAL CHARACTERISTICS

THS4041-Q1
 165-MHz C-STABLE HIGH-SPEED AMPLIFIER

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

DIFFERENTIAL GAIN
vs

Figure 33

DIFFERENTIAL PHASE
vs
NUMBER OF 150- Ω LOADS

Figure 36

DIFFERENTIAL PHASE
vs

Figure 34
CLOSED-LOOP
OUTPUT IMPEDANCE
vs
FREQUENCY

Figure 37

Figure 35

PSRR
vs
FREQUENCY

Figure 38

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 48

Figure 51

Figure 54

Figure 49

Figure 52

Figure 55

1-V FALLING EDGE RESPONSE

Figure 50

Figure 53

Figure 56

TYPICAL CHARACTERISTICS

Figure 57

1-V STEP RESPONSE

Figure 58

1-V STEP RESPONSE

Figure 59

Figure 60

5-V STEP RESPONSE

Figure 61

APPLICATION INFORMATION

theory of operation

The THS404x is a high-speed, operational amplifier configured in a voltage feedback architecture. It is built using a 30-V, dielectrically isolated, complementary bipolar process with NPN and PNP transistors possessing $\mathrm{f}_{\mathrm{T}} \mathrm{S}$ of several GHz . This results in an exceptionally high performance amplifier that has a wide bandwidth, high slew rate, fast settling time, and low distortion. A simplified schematic is shown in Figure 62.

Figure 62. THS4041 Simplified Schematic

noise calculations and noise figure

Noise can cause errors on small signals. This is especially true when amplifying small signals, where signal-to-noise ration (SNR) is important. The noise model for the THS404x is shown in Figure 63. This model includes all of the noise sources as follows:

- $e_{n}=$ Amplifier internal voltage noise $(\mathrm{nV} / \sqrt{\mathrm{Hz}})$
- $\quad \mathrm{I} \mathrm{N}_{+}=$Noninverting current noise $(\mathrm{pA} / \sqrt{\mathrm{Hz}})$
- $\mathrm{IN}-=$ Inverting current noise $(\mathrm{pA} / \sqrt{\mathrm{Hz}})$
- $\mathrm{e}_{\mathrm{Rx}}=$ Thermal voltage noise associated with each resistor $\left(\mathrm{e}_{\mathrm{Rx}}=4 \mathrm{kTR} \mathrm{R}_{\mathrm{x}}\right)$

APPLICATION INFORMATION

noise calculations and noise figure (continued)

Figure 63. Noise Model
The total equivalent input noise density $\left(\mathrm{e}_{\mathrm{ni}}\right)$ is calculated by using the following equation:

$$
e_{\mathrm{ni}}=\sqrt{\left(\mathrm{e}_{\mathrm{n}}\right)^{2}+\left(\mathrm{IN}+\times \mathrm{R}_{\mathrm{S}}\right)^{2}+\left(\mathrm{IN}-\times\left(\mathrm{R}_{\mathrm{F}} \| \mathrm{R}_{\mathrm{G}}\right)\right)^{2}+4 \mathrm{kTR}_{\mathrm{S}}+4 \mathrm{kT}\left(\mathrm{R}_{\mathrm{F}} \| \mathrm{R}_{\mathrm{G}}\right)}
$$

Where:
$\mathrm{k}=$ Boltzmann's constant $=1.380658 \times 10^{-23}$
$\mathrm{T}=$ Temperature in degrees Kelvin $\left(273+{ }^{\circ} \mathrm{C}\right)$
$R_{F} \| R_{G}=$ Parallel resistance of R_{F} and R_{G}
To get the equivalent output noise of the amplifier, just multiply the equivalent input noise density $\left(\mathrm{e}_{\mathrm{n}}\right)$ by the overall amplifier gain (A_{V}).

$$
e_{n o}=e_{n i} A_{V}=e_{n i}\left(1+\frac{R_{F}}{R_{G}}\right) \text { (noninverting case) }
$$

As the previous equations show, to keep noise at a minimum, small value resistors should be used. As the closed-loop gain is increased (by reducing R_{G}), the input noise is reduced considerably because of the parallel resistance term. This leads to the general conclusion that the most dominant noise sources are the source resistor (R_{S}) and the internal amplifier noise voltage (e_{n}). Because noise is summed in a root-mean-squares method, noise sources smaller than 25% of the largest noise source can be effectively ignored. This can greatly simplify the formula and make noise calculations much easier to calculate.
For more information on noise analysis, see the Noise Analysis section in the Operational Amplifier Circuits Applications Report (literature number SLVA043).

APPLICATION INFORMATION

noise calculations and noise figure (continued)

This brings up another noise measurement usually preferred in RF applications, the noise figure (NF). The noise figure is a measure of noise degradation caused by the amplifier. The value of the source resistance must be defined and is typically 50Ω in RF applications.

$$
N F=10 \log \left[\frac{e_{n i}{ }^{2}}{\left(\mathrm{e}_{\mathrm{Rs}}\right)^{2}}\right]
$$

Because the dominant noise components are generally the source resistance and the internal amplifier noise voltage, we can approximate noise figure as:

$$
N F=10 \log \left[1+\frac{\left(\left(e_{\mathrm{n}}\right)^{2}+\left(\mathrm{IN}+\times \mathrm{R}_{\mathrm{S}}\right)^{2}\right)}{4 \mathrm{kTR}_{\mathrm{S}}}\right]
$$

Figure 64 shows the noise figure graph for the THS404x.
NOISE FIGURE
vs
SOURCE RESISTANCE

Figure 64.

APPLICATION INFORMATION

driving a capacitive load

Driving capacitive loads with high performance amplifiers is not a problem as long as certain precautions are taken. The first is to realize that the THS404x has been internally compensated to maximize its bandwidth and slew rate performance. Typically when the amplifier is compensated in this manner, capacitive loading directly on the output will decrease the device's phase margin, leading to high frequency ringing or oscillations. However, the THS404x has added internal circuitry that senses a capacitive load and adds extra compensation to the internal dominant pole. As the capacitive load increases, the amplifier remains stable. But, it is not uncommon to see a small amount of peaking in the frequency response. There are typically two ways to compensate for this. The first is to simply increase the gain of the amplifier. This helps by increasing the phase margin to keep peaking minimized. The second is to place an isolation resistor in series with the output of the amplifier, as shown in Figure 65. A minimum value of 20Ω should work well for most applications. For example, in $75-\Omega$ transmission systems, setting the series resistor value to 75Ω both isolates any capacitance loading and provides the proper line impedance matching at the source end. For more information about driving capacitive loads, see the Output Resistance and Capacitance section of the Parasitic Capacitance in Op Amp Circuits Application Report (literature number SLOA013).

Figure 65. Driving a Capacitive Load for Extra Stability

offset nulling

The THS404x has low input offset voltage for a high-speed amplifier. However, if additional correction is required, an offset nulling function has been provided on the THS4041. The input offset can be adjusted by placing a potentiometer between terminals 1 and 8 of the device and tying the wiper to the negative supply. This is shown in Figure 66.

Figure 66. Offset Nulling Schematic

APPLICATION INFORMATION

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage $\left(\mathrm{V}_{\mathrm{IO}}\right)$ and both input bias currents $\left(\mathrm{I}_{\mathrm{IB}}\right)$ times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

Figure 67. Output Offset Voltage Model

optimizing unity gain response

Internal frequency compensation of the THS404x was selected to provide very wideband performance yet still maintain stability when operated in a noninverting unity gain configuration. When amplifiers are compensated in this manner there is usually peaking in the closed loop response and some ringing in the step response for fast input edges, depending upon the application. This is because a minimum phase margin is maintained for the $G=+1$ configuration. For optimum settling time and minimum ringing, a feedback resistor of 200Ω should be used as shown in Figure 68. Additional capacitance can also be used in parallel with the feedback resistance if even finer optimization is required.

Figure 68. Noninverting, Unity Gain Schematic

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high frequency performance of the THS404x, follow proper printed-circuit board high frequency design techniques. A general set of guidelines is given below. In addition, a THS404x evaluation board is available to use as a guide for layout or for evaluating the device performance.

- Ground planes - It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling - Use a $6.8-\mu \mathrm{F}$ tantalum capacitor in parallel with a $0.1-\mu \mathrm{F}$ ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a $0.1-\mu \mathrm{F}$ ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the $0.1-\mu \mathrm{F}$ capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets - Sockets are not recommended for high-speed operational amplifiers. The additional lead inductance in the socket pins often leads to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation.
- Short trace runs/compact part placements - Optimum high frequency performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the input of the amplifier.
- Surface-mount passive components - Using surface-mount passive components is recommended for high frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible.

APPLICATION INFORMATION

evaluation board

An evaluation board is available for the THS4041 (literature number SLOP219). This board has been configured for very low parasitic capacitance in order to realize the full performance of the amplifier. A schematic of the evaluation board is shown in Figure 69. The circuitry has been designed so that the amplifier may be used in either an inverting or noninverting configuration. For more information, see the THS4041 EVM User's Guide. To order the evaluation board, contact your local Texas Instruments sales office or distributor.

Figure 69. THS4041 Evaluation Board

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$	
THS4041IDRQ1	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
None: Not yet available Lead (Pb-Free).
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: \dagger Full range $=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for I suffix

