SLLS044D - NOVEMBER 1988 - REVISED DECEMBER 1999

8 | V_{CC}

5 GND

7 | B

6 🛮 A

D OR P PACKAGE (TOP VIEW)

RE

DE [3

D

- **Bidirectional Transceiver**
- Meets or Exceeds the Requirements of TIA/EIA-422-B, TIA/EIA-485-A, and ITU **Recommendation V.11**
- **High-Speed Advanced Low-Power Schottky** Circuitry
- Low Skew . . . 6 ns Max
- **Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments**
- Low Supply-Current Requirements . . . 30 mA Max
- Wide Positive and Negative Input/Output **Bus-Voltage Ranges**
- Driver Output Capacity . . . ±60 mA
- Thermal-Shutdown Protection
- **Driver Positive and Negative Current** Limiting
- Receiver Input Impedances . . . 12 k Ω Min
- Receiver Input Sensitivity . . . ±200 mV Max
- Receiver Input Hysteresis . . . 120 mV Typ
- Fail Safe . . . High Receiver Output With Inputs Open
- **Operates From a Single 5-V Supply**
- Glitch-Free Power-Up and Power-Down **Protection**
- Interchangeable With National DS3695 and **DS3695A**

description

The TL3695 differential bus transceiver is designed for bidirectional data communication on multipoint bus-transmission lines. It is designed for balanced transmission lines and meets TIA/EIA-422-B, TIA/EIA-485-A, and ITU Recommendation V.11.

The TL3695 combines a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a directional control. The driver differential outputs and the receiver differential inputs are connected internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus when the driver is disabled or $V_{
m CC}$ = 0. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party line applications.

The TL3695 is characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AVAILABLE OPTIONS

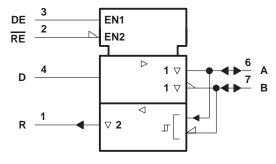
	PACKAGED DEVICES				
TA	SMALL OUTLINE	PLASTIC DIP			
	(D)	(P)			
0°C to 70°C	TL3695D	TL3695P			

The D package is available taped and reeled. Add the suffix R to device type (e.g., TL3695DR).

Function Tables

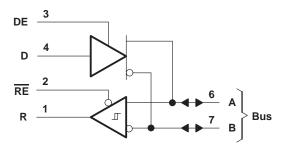
DRIVER

INPUT	ENABLE	OUTI	PUTS
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
X	L	Z	Z

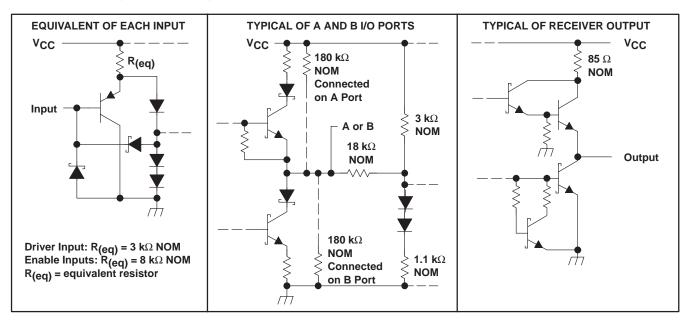

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

RECEIVER

DIFFERENTIAL INPUTS A – B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{1D} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 V$	L	L
X	Н	Z
Inputs open	L	Н


H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematic of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	7 V
Voltage range at any bus terminal	
Enable input voltage, V _I	5.5 V
Operating free-air temperature range, T _A	0°C to 70°C
Package thermal impedance, θ_{JA} (see Note 2): D package	97°C/W
PW package	85°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

TL3695 DIFFERENTIAL BUS TRANSCEIVER

SLLS044D - NOVEMBER 1988 - REVISED DECEMBER 1999

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Voltage at any bus terminal (separately or common mode), V _I or V _I C				12	V
voltage at any bus terminal (separately of common mode), vpor vpc			-7	V	
High-level Input voltage, VIH	D, DE, and RE	2			V
Low-level Input voltage, V _{IL}	D, DE, and RE			0.8	V
Differential input voltage, V _{ID} (see Note 3)				±12	V
High level output ourrent leve	Driver			- 60	mA
High-level output current, IOH	Receiver			- 400	μΑ
Low level output output lev	Driver			60	A
Low-level output current, IOL Receiver				8	mA
Operating free-air temperature, TA		0		70	°C

NOTE 3: Differential input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONI	MIN	TYP‡	MAX	UNIT	
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V
٧o	Output voltage	I _O = 0		0		6	V
V _{OD1}	Differential output voltage	IO = 0		1.5		5	V
V _{OD2}	Differential output voltage	R _L = 100 Ω,	See Figure 1	1/2 V _{OD1} or 2§			V
		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	$V_{test} = -7 \text{ V to } 12 \text{ V},$	See Figure 2	1.5		5	V
Δ V _{OD}	Change in magnitude of differential output voltage¶					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega$,	See Figure 1			3	V
∆ Voc	Change in magnitude of common-mode output voltage¶					±0.2	V
la.	Output oursent	Output disabled,	V _O = 12 V			1	mA
Ю	Output current	See Note 4	$V_O = -7 V$			-0.8	mA
lн	High-level input current	V _I = 2.4 V				20	μΑ
I _{IL}	Low-level input current	V _I = 0.4 V				-200	μΑ
		V _O = -6 V				-250	
	Short-circuit output current#	VO = 0				-150	mA
los	Short-circuit output current"	VO = VCC				250	IIIA
		VO = 8 V				250	
laa	Cumply current	No load	Outputs enabled		23	50	mA
Icc	Supply current	INU IUdu	Outputs disabled		19	35 mA	

[†] The power-off measurement in TIA/EIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER TEST CONDITIONS				MIN	TYP‡	MAX	UNIT
t _d (OD)	Differential-output delay time					8	22	ns
	Skew ($ t_{d(ODH)} - t_{d(ODL)} $)	$C_{L1} = C_{L2} = 100 \text{ pF},$	$R_L = 60 \Omega$,	See Figure 3		1	8	ns
t _t (OD)	Differential output transition time					8	18	ns
^t PZH	Output enable time to high level	$C_L = 100 pF$,	$R_L = 500 \Omega$,	See Figure 4			50	ns
tPZL	Output enable time to low level	C _L = 100 pF,	$R_L = 500 \Omega$,	See Figure 5			50	ns
tPHZ	Output disable time from high level	C _L = 15 pF,	$R_L = 500 \Omega$,	See Figure 4		8	30	ns
tPLZ	Output disable time from low level	C _L = 15 pF,	$R_L = 500 \Omega$,	See Figure 5		8	30	ns

 $[\]pm$ All typical values are at V_{CC} = 5 V and T_A = 25°C.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

[§] The minimum V_{OD2} with a $100-\Omega$ load is either 1/2 V_{OD1} or 2 V, whichever is greater. $\P\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

[#] Duration of the short circuit should not exceed one second for this test.

NOTE 4: This applies for power on and power off. Refer to TIA/EIA-485-A for exact conditions. The TIA/EIA-422-B limit does not apply for a combined driver and receiver terminal.

SYMBOL EQUIVALENTS

DATA-SHEET PARAMETER	TIA/EIA-422-B	TIA/EIA-485-A
Vo	V_{oa}, V_{ob}	V _{oa} , V _{ob}
V _{OD1}	Vo	V _O
V _{OD2}	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
IVOD3		V _t (test termination measurement 2)
V _{test}		V _{tst}
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	V _{os}
Δ VOC	$ V_{OS} - \overline{V}_{OS} $	$ V_{OS} - \overline{V}_{OS} $
Ios	I _{sa} , I _{sb}	
IO	I _{xa} , I _{xb}	I _{ia} , I _{ib}

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	IDITIONS	MIN	TYP [†]	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$V_0 = 2.7 V$,	$I_{O} = -0.4 \text{ mA}$			0.2	V
V _{IT} _	Negative-going input threshold voltage	$V_0 = 0.5 V$,	I _O = 8 mA	-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT+} -V _{IT-})	$V_{OC} = 0$			70		mV
VIK	Enable-input clamp voltage	I _I = -18 mA				-1.5	V
VOH	High-level output voltage	V_{ID} = 200 mV or input I_{OH} = -400 μ A,	ts open, See Figure 6	2.4			٧
V	Low lovel output voltage	$V_{ID} = -200 \text{ mV},$	I _{OL} = 16 mA			0.5	V
VOL	Low-level output voltage	See Figure 6	I _{OL} = 8 mA			0.45	V
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 V				±20	μΑ
1.	Line input surrent	Other input = 0,	V _I = 12 V		1	A	
l II	Line input current	See Note 5	V _I = -7 V			-0.8	mA
lн	High-level enable-input current	V _{IH} = 2.7 V				20	μΑ
I₁∟	Low-level enable-input current	V _{IL} = 0.4 V				-100	μΑ
rı	Input resistance			12			kΩ
los	Short-circuit output current§	V _O = 0		-15		-85	mA
laa	Outside summer!	No load	Outputs enabled		23	50	m A
Icc	Supply current	INO IOAU	Outputs disabled		19	35	mA

NOTE 5: This applies for power on and power off. Refer to TIA/EIA-485-A for exact conditions.

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. ‡ The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

[§] Duration of the short circuit should not exceed one second for this test.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature range, C_L = 15 pF

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$		14	37	ns
tPHL	Propagation delay time, high- to low-level output	See Figure 7		14	37	ns
^t PZH	Output enable time to high level	See Figure 8		7	20	ns
tPZL	Output enable time to low level	See Figure 6		7	20	ns
^t PHZ	Output disable time from high level	See Figure 8		7	16	ns
tPLZ	Output disable time from low level	See Figure 6		8	16	ns

 $[\]dagger$ All typical values are at V_{CC} = 5 V and T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

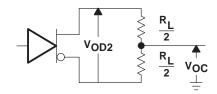


Figure 1. Driver V_{OD} and V_{OC}

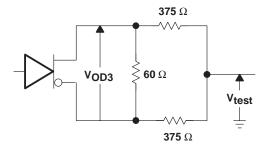
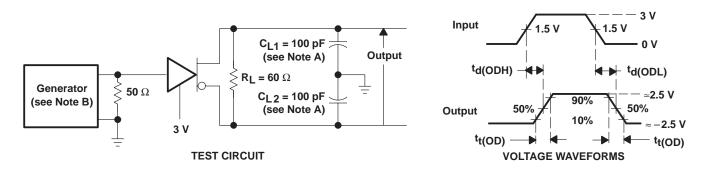
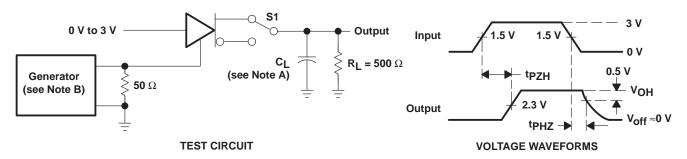
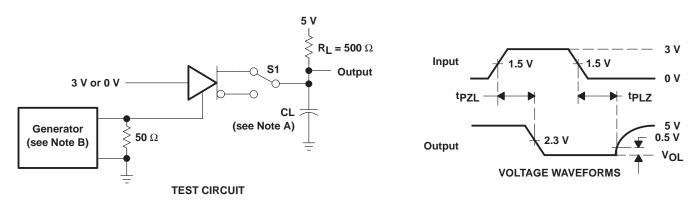



Figure 2. Driver V_{OD3}


NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{f} \leq$ 6 ns, $t_{O} = 50 \Omega$.

Figure 3. Driver Differential-Output Test Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 10 ns, $t_{\Gamma} \leq$

Figure 4. Driver Test Circuit and Voltage Waveforms

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 10 ns, $t_{\Gamma} \leq$

Figure 5. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

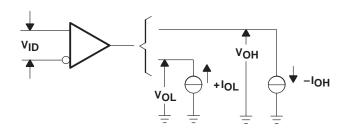
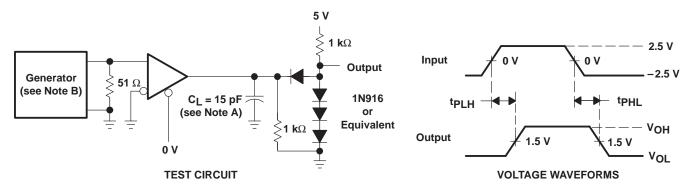
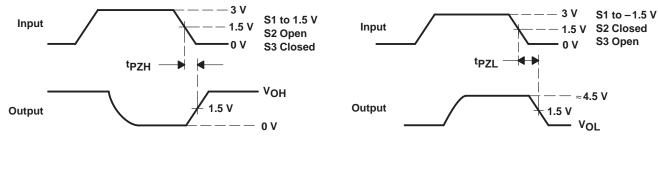



Figure 6. Receiver V_{OH} and V_{OL}

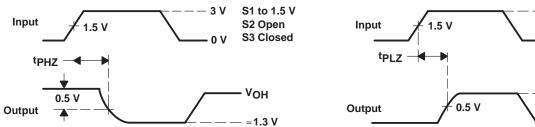



NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 10 ns, $t_{\Gamma} \leq$

Figure 7. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION


S1 to -1.5 V

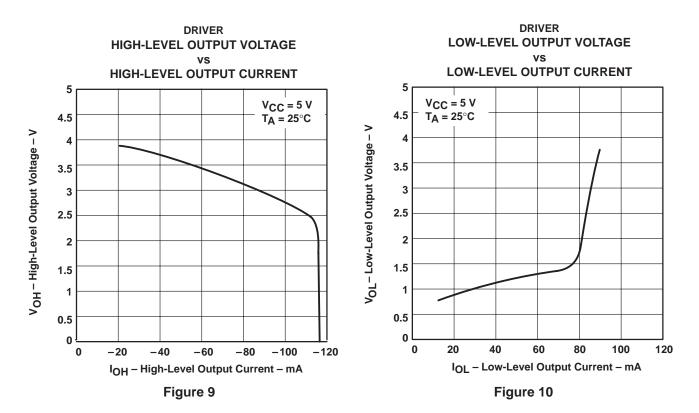
S2 Closed

S3 Open

≈ 1.3 V

 v_{OL}

VOLTAGE WAVEFORMS


NOTES: A. C_L includes probe and jig capacitance.

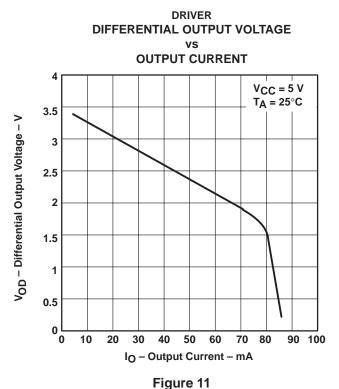

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 10 ns, $t_f \leq$ 10 ns, $Z_Q =$ 50 Ω .

Figure 8. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS[†]

† Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

TYPICAL CHARACTERISTICS[†]

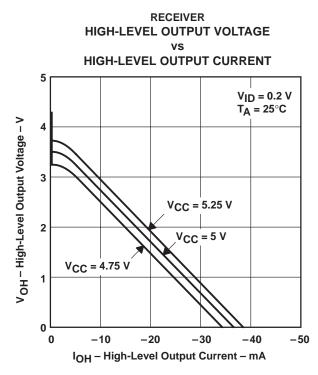
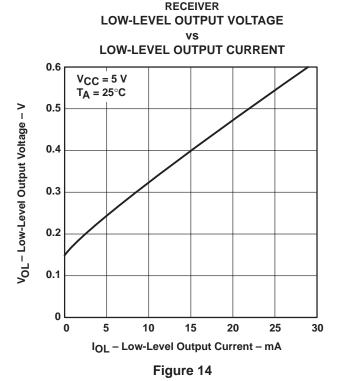



Figure 12

RECEIVER
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE

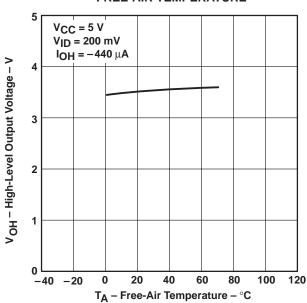


Figure 13

RECEIVER LOW-LEVEL OUTPUT VOLTAGE vs

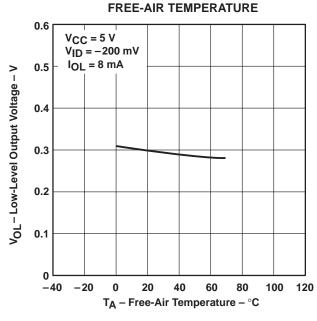
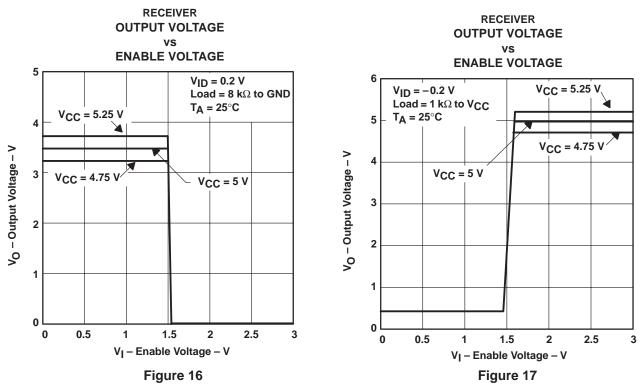
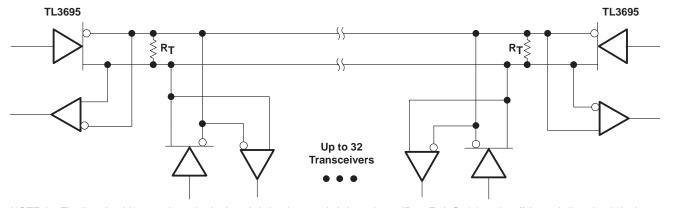



Figure 15

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.



TYPICAL CHARACTERISTICS[†]

† Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance ($R_T = Z_O$). Stub lengths off the main line should be kept as short as possible.

Figure 18. Typical Application Circuit

PACKAGE OPTION ADDENDUM

www ti com 25-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL3695D	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
TL3695DR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
TL3695P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

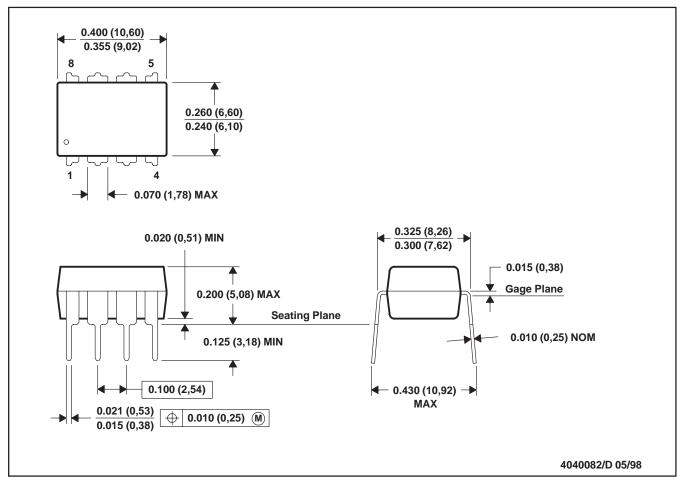
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

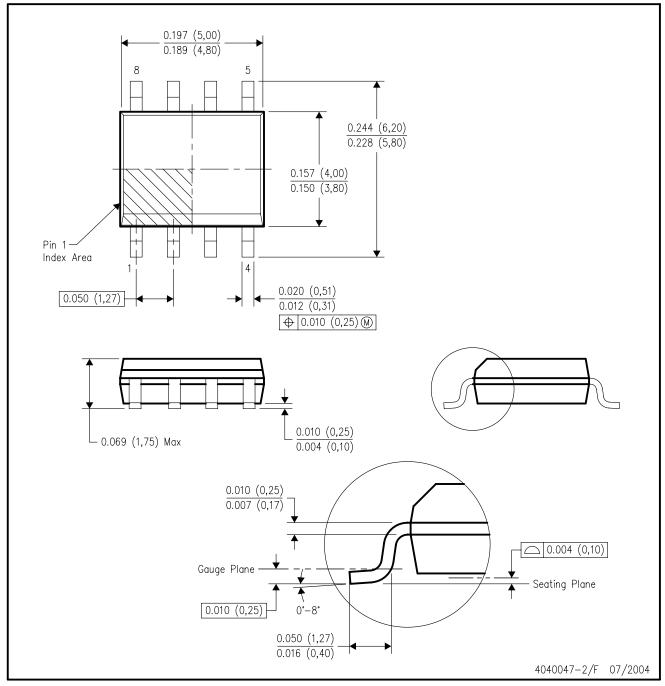

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated