- A-Suffix Versions Offer 5-mV V_{10}
- B-Suffix Versions Offer 2-mV VIO
- Wide Range of Supply Voltages
1.4 V to 16 V
- True Single-Supply Operation
- Common-Mode Input Voltage Includes the Negative Rail
- Low Noise ... $30 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Typ at $\mathrm{f}=1 \mathrm{kHz}$ (High-Bias Versions)

description

The TLC252, TLC25L2, and TLC25M2 are low-cost, low-power dual operational amplifiers designed to operate with single or dual supplies. These devices utilize the Texas Instruments silicon gate LinCMOS™ process, giving them stable input offset voltages that are available in selected grades of 2,5 , or 10 mV maximum, very high input impedances, and extremely low input offset and bias currents. Because the input common-mode range extends to the negative rail and the power consumption is extremely low, this series is ideally suited for battery-powered or energy-conserving applications. The series offers operation down to a $1.4-\mathrm{V}$ supply, is stable at unity gain, and has excellent noise characteristics.

These devices have internal electrostatic-discharge (ESD) protection circuits that prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance.

AVAILABLE OPTIONS

$\mathrm{T}_{\text {A }}$	$V_{\text {IO max }}$ AT $25^{\circ} \mathrm{C}$	PACKAGED DEVICES			CHIP FORM (Y)
		SMALL OUTLINE (D)	PLASTIC DIP (P)	$\begin{aligned} & \hline \text { TSSOP } \\ & \text { (PW) } \end{aligned}$	
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\begin{gathered} 10 \mathrm{mV} \\ 5 \mathrm{mV} \\ 2 \mathrm{mV} \end{gathered}$	$\begin{aligned} & \text { TLC252CD } \\ & \text { TLC252ACD } \\ & \text { TLC252BCD } \end{aligned}$	$\begin{aligned} & \text { TLC252CP } \\ & \text { TLC252ACP } \\ & \text { TLC252BCP } \end{aligned}$	TLC252CPW TLC252ACPW TLC252BCPW	TLC252Y
	$\begin{gathered} 10 \mathrm{mV} \\ 5 \mathrm{mV} \\ 2 \mathrm{mV} \end{gathered}$	TLC25L2CD TLC25L2ACD TLC25L2BCD	TLC25L2CP TLC25L2ACP TLC25L2BCP	TLC25L2CPW TLC25L2ACPW TLC25L2BCPW	$\begin{gathered} \hline \text { TLC25L2Y } \\ - \\ - \end{gathered}$
	$\begin{gathered} 10 \mathrm{mV} \\ 5 \mathrm{mV} \\ 2 \mathrm{mV} \end{gathered}$	TLC25M2CD TLC25M2ACD TLC25M2BCD	TLC25M2CP TLC25M2ACP TLC25M2BCP	-	$\overline{\text { TLC25M2Y }}$ -

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC252CDR). Chips are tested at $25^{\circ} \mathrm{C}$.

TLC252, TLC252A, TLC252B, TLC252Y, TLC25L2, TLC25L2A, TLC25L2B
 TLC25L2Y, TLC25M2, TLC25M2A, TLC25M2B, TLC25M2Y
 LinCMOSTM DUAL OPERATIONAL AMPLIFIERS

SLOS002I - JUNE 1983-REVISED MARCH 2001

description (continued)

Because of the extremely high input impedance and low input bias and offset currents, applications for the TLC252/25_2 series include many areas that have previously been limited to BIFET and NFET product types. Any circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective use of these devices. Many features associated with bipolar technology are available with LinCMOS ${ }^{\top м}$ operational amplifiers without the power penalties of traditional bipolar devices. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC252/25_2 series devices. Remote and inaccessible equipment applications are possible using their low-voltage and low-power capabilities. The TLC252/25_2 series is well suited to solve the difficult problems associated with single-battery and solar-cell-powered applications. This series includes devices that are characterized for the commercial temperature range and are available in 8-pin plastic dip and the small-outline package. The device is also available in chip form.
The TLC252/25_2 series is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

equivalent schematic (each amplifier)

TLC252Y, TLC25L2Y, and TLC25M2Y chip information

These chips, properly assembled, display characteristics similar to the TLC252/25_2. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

BONDING PAD ASSIGNMENTS

CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4×4 MINIMUM
$\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}$
TOLERANCES ARE $\pm 10 \%$.
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq \mathbf{2 5 ^ { \circ }} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW
PW	525 mW	$4.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	336 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V_{DD}		1.4	16	V
Common-mode input voltage, VIC	$\mathrm{V}_{\mathrm{DD}}=1.4 \mathrm{~V}$	0	0.2	V
	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-0.2	4	
	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	-0.2	9	
	$\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V}$	-0.2	14	
Operating free-air temperature, T_{A}		0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=1.4 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS \dagger		TLC252_C		TLC25L2_C		TLC25M2_C			UNIT		
			MIN	TYP MAX	MIN	TYP MAX	MIN	TYP	MAX					
V_{10}	Input offset voltage	TLC25_2C TLC25_2AC			$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$	$25^{\circ} \mathrm{C}$		10		10			10	mV
			$\begin{array}{\|l\|} \hline 0^{\circ} \mathrm{C} \text { to } \\ 70^{\circ} \mathrm{C} \\ \hline \end{array}$			12		12			12			
			$25^{\circ} \mathrm{C}$			5		5			5			
			$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & 70^{\circ} \mathrm{C} \end{aligned}$			6.5		6.5			6.5			
			$25^{\circ} \mathrm{C}$			2		2			2			
		TLC25_2BC	$\begin{array}{\|l\|} \hline 0^{\circ} \mathrm{C} \text { to } \\ 70^{\circ} \mathrm{C} \\ \hline \end{array}$			3		3			3			
$\alpha^{\text {VII }}$	Average temperature coefficient of input offset voltage			$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } \\ 70^{\circ} \mathrm{C} \end{gathered}$	1		1		1			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
${ }_{1} \mathrm{O}$	Input offset current		$\mathrm{V}_{\mathrm{O}}=0.2 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		160		160		1	60	pA		
			$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & 70^{\circ} \mathrm{C} \end{aligned}$		300		300			300				
IIB	Input bias current			$\mathrm{V}_{\mathrm{O}}=0.2 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		160		160		1	60	pA	
			$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & 70^{\circ} \mathrm{C} \end{aligned}$			600		600			600			
VICR	Common-mode input voltage range			$25^{\circ} \mathrm{C}$	$\begin{gathered} \hline 0 \text { to } \\ 0.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline 0 \text { to } \\ 0.2 \end{gathered}$		$\begin{gathered} \hline 0 \text { to } \\ 0.2 \\ \hline \end{gathered}$			V		
VOM	Peak output voltage swing \ddagger		$V_{\text {ID }}=100 \mathrm{mV}$	$25^{\circ} \mathrm{C}$	450	700	450	700	450	700		mV		
AVD	Large-signal differential voltage amplification		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=100 \text { to } 300 \mathrm{mV}, \\ & \mathrm{RS}_{\mathrm{S}}=50 \Omega \end{aligned}$	$25^{\circ} \mathrm{C}$	10		20		20			V/mV		
CMRR	Common-mode rejection ratio		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{O}}=0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\text {ICR }} \text { min } \end{aligned}$	$25^{\circ} \mathrm{C}$		77	60	77	60	77		dB		
IDD	Supply current		$\mathrm{V}_{\mathrm{O}}=0.2 \mathrm{~V}$ No load	$25^{\circ} \mathrm{C}$		300375		$25 \quad 34$		200	250	$\mu \mathrm{A}$		

\dagger All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Unless otherwise noted, an output load resistor is connected from the output to ground and has the following value: for low bias $R_{L}=1 \mathrm{M} \Omega$, for medium bias $R_{L}=100 \mathrm{k} \Omega$, and for high bias $R_{L}=10 \mathrm{k} \Omega$.
\ddagger The output swings to the potential of V_{DD} _/GND.
operating characteristics, $\mathrm{V}_{\mathrm{DD}}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	TLC252_C			TLC25L2_C			TLC25M2_C			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
B_{1}	Unity-gain bandwidth		$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=40 \mathrm{~dB}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		12			12			12		kHz
SR	Slew rate at unity gain	See Figure 1		0.1			0.001			0.01		V/us	
	Overshoot factor	See Figure 1		30\%			35\%			35\%			

TLC252, TLC252A, TLC252B, TLC252Y, TLC25L2, TLC25L2A, TLC25L2B
TLC25L2Y, TLC25M2, TLC25M2A, TLC25M2B, TLC25M2Y LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
SLOS002I - JUNE 1983 - REVISED MARCH 2001
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	$\begin{gathered} \text { TLC252C, TLC252AC, } \\ \text { TLC252BC } \end{gathered}$			UNIT		
			MIN	TYP		MAX					
V_{10}	Input offset voltage	TLC252C			$\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}$,	$\mathrm{V}_{\text {IC }}=0$,	$25^{\circ} \mathrm{C}$		1.1	10	mV
			$\mathrm{R}_{\mathrm{S}}=50 \Omega$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	Full range			12			
		TLC252AC	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=0, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$25^{\circ} \mathrm{C}$		0.9	5			
					Full range			6.5			
		TLC252BC	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=0, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$25^{\circ} \mathrm{C}$		0.23	2			
					Full range			3			
< VIIO	Average temperature coefficient of input offset voltage				$25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		1.8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
IIO	Input offset current (see Note 4)		$\mathrm{V} \mathrm{O}=2.5 \mathrm{~V}$,	$\mathrm{V}_{\text {IC }}=2.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		0.1	60	pA		
			$70^{\circ} \mathrm{C}$			7	300				
IB	Input bias current (see Note 4)			$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$,	V IC $=2.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		0.6	60	pA	
			$70^{\circ} \mathrm{C}$				40	600			
VICR	Common-mode input voltage range (see Note 5)				$25^{\circ} \mathrm{C}$	$\begin{array}{r} -0.2 \\ \text { to } \\ 4 \end{array}$	$\begin{array}{r} -0.3 \\ \text { to } \\ 4.2 \end{array}$		V		
					Full range	$\begin{array}{r} -0.2 \\ \text { to } \\ 3.5 \end{array}$			V		
V_{OH}	High-level output vo		V ID $=100 \mathrm{mV}$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	3.2	3.8		V		
					$0^{\circ} \mathrm{C}$	3	3.8				
					$70^{\circ} \mathrm{C}$	3	3.8				
VOL	Low-level output vo		$\mathrm{V}_{\mathrm{ID}}=-100 \mathrm{mV}$,	$\mathrm{IOL}=0$	$25^{\circ} \mathrm{C}$		0	50	mV		
					$0^{\circ} \mathrm{C}$		0	50			
					$70^{\circ} \mathrm{C}$		0	50			
AVD	Large-signal differential voltage amplification		$\mathrm{V} \mathrm{O}=0.25 \mathrm{~V}$ to 2 V ,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	5	23		V/mV		
			$0^{\circ} \mathrm{C}$		4	27					
			$70^{\circ} \mathrm{C}$		4	20					
CMRR	Common-mode rejection ratio			$V_{\text {IC }}=V_{\text {ICR }}$ min		$25^{\circ} \mathrm{C}$	65	80		dB	
					$0^{\circ} \mathrm{C}$	60	84				
					$70^{\circ} \mathrm{C}$	60	85				
kSVR	Supply-voltage rejection ratio $\left(\Delta V_{D D} / \Delta V_{D D}\right)$			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ to 10 V ,	$\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	65	95		dB	
			$0^{\circ} \mathrm{C}$			60	94				
			$70^{\circ} \mathrm{C}$			60	96				
IDD	Supply current (two amplifiers)		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{v},$ No load	V IC $=2.5 \mathrm{~V}$,	$25^{\circ} \mathrm{C}$		1.4	3.2	mA		
			$0^{\circ} \mathrm{C}$			1.6	3.6				
			$70^{\circ} \mathrm{C}$			1.2	2.6				

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ (unless otherwise noted)

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.

TLC252, TLC252A, TLC252B, TLC252Y, TLC25L2, TLC25L2A, TLC25L2B
TLC25L2Y, TLC25M2, TLC25M2A, TLC25M2B, TLC25M2Y
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
SLOSO02I - JUNE 1983 - REVISED MARCH 2001
operating characteristics, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

operating characteristics, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$

PARAMETER		TEST CONDITIONS			T_{A}	$\begin{gathered} \hline \text { TLC252C, TLC252AC, } \\ \text { TLC252BC } \end{gathered}$			UNIT			
		MIN	TYP	MAX								
SR	Slew rate at unity gain				$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text {, }$ See Figure 1	$C_{L}=20 \mathrm{pF},$	$V_{l(P P)}=1 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		5.3		V / us
		$0^{\circ} \mathrm{C}$		5.9								
		$70^{\circ} \mathrm{C}$		4.3								
		$V_{1(P P)}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$				4.6					
			$0^{\circ} \mathrm{C}$				5.1					
			$70^{\circ} \mathrm{C}$				3.8					
V_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{S}}=20 \Omega$,	See Figure 2	$25^{\circ} \mathrm{C}$		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
BOM	Maximum output-swing bandwidth	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}},$ See Figure 1	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF},$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text {, }$	$25^{\circ} \mathrm{C}$		200		kHz			
					$0^{\circ} \mathrm{C}$		220					
					$70^{\circ} \mathrm{C}$		140					
B_{1}	Unity-gain bandwidth	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}$,	$C_{L}=20 \mathrm{pF}$,	See Figure 3	$25^{\circ} \mathrm{C}$		2.2		MHz			
					$0^{\circ} \mathrm{C}$		2.5					
					$70^{\circ} \mathrm{C}$		1.8					
$\phi \mathrm{m}$	Phase margin	$V_{I}=10 \mathrm{mV}$ See Figure 3	$\mathrm{f}=\mathrm{B}_{1},$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$,	$25^{\circ} \mathrm{C}$		49°					
					$0^{\circ} \mathrm{C}$		50°					
					$70^{\circ} \mathrm{C}$		46°					

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually

TLC252, TLC252A, TLC252B, TLC252Y, TLC25L2, TLC25L2A, TLC25L2B
TLC25L2Y, TLC25M2, TLC25M2A, TLC25M2B, TLC25M2Y LinCMOS ${ }^{\text {TM }}$ DUAL OPERATIONAL AMPLIFIERS
SLOSO02I - JUNE 1983 - REVISED MARCH 2001
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ (unless otherwise noted)

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
operating characteristics, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

PARAMETER		TEST CONDITIONS			T_{A}	TL TL TL	$\begin{aligned} & \mathrm{C} 25 \mathrm{~L} 2 \mathrm{C} \\ & 25 \mathrm{~L} 2 \mathrm{~A} \\ & 25 \mathrm{~L} 2 \mathrm{~B} \end{aligned}$		UNIT			
		MIN	TYP	MAX								
SR	Slew rate at unity gain				$R_{L}=1 M \Omega,$ See Figure 1	$C_{L}=20 \mathrm{pF}$,	$V_{l(P P)}=1 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		0.03		V/us
		$0^{\circ} \mathrm{C}$		0.04								
		$70^{\circ} \mathrm{C}$		0.03								
		$\mathrm{V}_{\mathrm{I}}(\mathrm{PP})=2.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$				0.03					
			$0^{\circ} \mathrm{C}$				0.03					
			$70^{\circ} \mathrm{C}$				0.02					
V_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{S}}=20 \Omega$,	See Figure 2	$25^{\circ} \mathrm{C}$		68		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
BOM	Maximum output-swing bandwidth	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}},$ See Figure	$C_{L}=20 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$,	$25^{\circ} \mathrm{C}$		5		kHz			
					$0^{\circ} \mathrm{C}$		6					
					$70^{\circ} \mathrm{C}$		4.5					
B_{1}	Unity-gain bandwidth	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}$,	$C \mathrm{~L}=20 \mathrm{pF}$,	See Figure 3	$25^{\circ} \mathrm{C}$		85		MHz			
					$0^{\circ} \mathrm{C}$		100					
					$70^{\circ} \mathrm{C}$		65					
ϕ_{m}	Phase margin	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV},$ See Figure 3	$f=B_{1}$,	$C_{L}=20 \mathrm{pF}$,	$25^{\circ} \mathrm{C}$		34°					
					$0^{\circ} \mathrm{C}$		36°					
					$70^{\circ} \mathrm{C}$		30°					

operating characteristics, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$

PARAMETER		TEST CONDITIONS			T_{A}		$\begin{aligned} & \mathrm{C25L2C} \\ & 25 \mathrm{~L} 2 \mathrm{~A} \\ & 25 \mathrm{~L} 2 \mathrm{~B} \end{aligned}$		UNIT			
		MIN	TYP	MAX								
SR	Slew rate at unity gain				$R_{L}=1 M \Omega,$ See Figure 1	$C_{L}=20 \mathrm{pF}$,	$\mathrm{V}_{1(P P)}=1 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		0.05		$\mathrm{V} / \mathrm{\mu s}$
		$0^{\circ} \mathrm{C}$		0.05								
		$70^{\circ} \mathrm{C}$		0.04								
		$V_{1(P P)}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$				0.04					
			$0^{\circ} \mathrm{C}$				0.05					
			$70^{\circ} \mathrm{C}$				0.04					
V_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$,	$\mathrm{R} \mathrm{S}=20 \Omega$,	See Figure 2	$25^{\circ} \mathrm{C}$		68		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
BOM	Maximum output-swing bandwidth	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ See Figure 1	$C_{L}=20 \mathrm{pF}$,	$R_{L}=1 \mathrm{M} \Omega$,	$25^{\circ} \mathrm{C}$		1		kHz			
					$0^{\circ} \mathrm{C}$		1.3					
					$70^{\circ} \mathrm{C}$		0.9					
B_{1}	Unity-gain bandwidth	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}$,	$C_{L}=20 \mathrm{pF}$,	See Figure 3	$25^{\circ} \mathrm{C}$		110		MHz			
					$0^{\circ} \mathrm{C}$		125					
					$70^{\circ} \mathrm{C}$		90					
ϕ_{m}	Phase margin	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV},$ See Figure 3	$\mathrm{f}=\mathrm{B}_{1},$	$C_{L}=20 \mathrm{pF}$,	$25^{\circ} \mathrm{C}$		38°					
					$0^{\circ} \mathrm{C}$		40°					
					$70^{\circ} \mathrm{C}$		34°					

TLC252, TLC252A, TLC252B, TLC252Y, TLC25L2, TLC25L2A, TLC25L2B
TLC25L2Y, TLC25M2, TLC25M2A, TLC25M2B, TLC25M2Y LinCMOS ${ }^{\text {TM }}$ DUAL OPERATIONAL AMPLIFIERS
SLOSO02I - JUNE 1983 - REVISED MARCH 2001
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ (unless otherwise noted)

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.

TLC252, TLC252A, TLC252B, TLC252Y, TLC25L2, TLC25L2A, TLC25L2B
TLC25L2Y, TLC25M2, TLC25M2A, TLC25M2B, TLC25M2Y
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
SLOSO02I - JUNE 1983 - REVISED MARCH 2001
operating characteristics, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

PARAMETER		TEST CONDITIONS			T_{A}				UNIT			
		MIN	TYP	MAX								
SR	Slew rate at unity gain				$R_{L}=100 \mathrm{k} \Omega \text {, }$ See Figure 1	$C_{L}=20 \mathrm{pF}$,	$V_{l(P P)}=1 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		0.43		V / us
		$0^{\circ} \mathrm{C}$		0.46								
		$70^{\circ} \mathrm{C}$		0.36								
		$\mathrm{V}_{1(\mathrm{PP})}=2.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$				0.40					
			$0^{\circ} \mathrm{C}$				0.43					
			$70^{\circ} \mathrm{C}$				0.34					
V_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{S}}=20 \Omega$,	See Figure 2	$25^{\circ} \mathrm{C}$		32		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
BOM	Maximum output-swing bandwidth	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}},$ See Figure	$C_{L}=20 \mathrm{pF}$,	$R_{L}=100 \mathrm{k} \Omega$,	$25^{\circ} \mathrm{C}$		55		kHz			
					$0^{\circ} \mathrm{C}$		60					
					$70^{\circ} \mathrm{C}$		50					
B_{1}	Unity-gain bandwidth	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}$,	$C \mathrm{~L}=20 \mathrm{pF}$,	See Figure 3	$25^{\circ} \mathrm{C}$		525		MHz			
					$0^{\circ} \mathrm{C}$		600					
					$70^{\circ} \mathrm{C}$		400					
$\phi \mathrm{m}$	Phase margin	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}$ See Figure 3	$\mathrm{f}=\mathrm{B}_{1},$	$C_{L}=20 \mathrm{pF}$,	$25^{\circ} \mathrm{C}$		40°					
					$0^{\circ} \mathrm{C}$		41°					
					$70^{\circ} \mathrm{C}$		39°					

operating characteristics, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$

PARAMETER		TEST CONDITIONS			T_{A}	TLLC	$\begin{aligned} & \text { C25M2 } \\ & 25 \mathrm{M} 2 \mathrm{~A} \\ & 25 \mathrm{M} 2 \mathrm{~B} \end{aligned}$		UNIT			
		MIN	TYP	MAX								
SR	Slew rate at unity gain				$R_{L}=100 \mathrm{k} \Omega \text {, }$ See Figure 1	$C_{L}=20 \mathrm{pF}$,	$V_{1(P P)}=1 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		0.62		$\mathrm{V} / \mathrm{\mu s}$
		$0^{\circ} \mathrm{C}$		0.67								
		$70^{\circ} \mathrm{C}$		0.51								
		$\mathrm{V}_{\mathrm{l}}(\mathrm{PP})=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$				0.56					
			$0^{\circ} \mathrm{C}$				0.61					
			$70^{\circ} \mathrm{C}$				0.46					
V_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{S}}=20 \Omega$,	See Figure 2	$25^{\circ} \mathrm{C}$		32		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
Bom	Maximum output-swing bandwidth	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}},$ See Figure 1	$C_{L}=20 \mathrm{pF},$	$R_{\mathrm{L}}=100 \mathrm{k} \Omega \text {, }$	$25^{\circ} \mathrm{C}$		35		kHz			
					$0^{\circ} \mathrm{C}$		40					
					$70^{\circ} \mathrm{C}$		30					
B_{1}	Unity-gain bandwidth	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}$,	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$,	See Figure 3	$25^{\circ} \mathrm{C}$		635		MHz			
					$0^{\circ} \mathrm{C}$		710					
					$70^{\circ} \mathrm{C}$		510					
¢m	Phase margin	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}$ See Figure 3	$f=B_{1},$	$C_{L}=20 \mathrm{pF}$,	$25^{\circ} \mathrm{C}$		43°					
					$0^{\circ} \mathrm{C}$		44°					
					$70^{\circ} \mathrm{C}$		42°					

electrical characteristics, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	TLC252Y			TLC25L2Y			TLC25M2Y			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
V_{10}	Input offset voltage		$\begin{array}{\|ll} \mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, & \mathrm{~V}_{\mathrm{IC}}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{S}}=50 \Omega, & \text { See Note } 6 \end{array}$		1.1	10		1.1	10		1.1	10	mV
$\alpha \mathrm{VIO}$	Average temperature coefficient of input offset voltage			1.8			1.1			1.7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
${ }^{10}$	Input offset current (see Note 4)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{DD}} / 2$		0.1	60		0.1	60		0.1	60	pA	
${ }^{\text {IIB }}$	Input bias current (see Note 4)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{DD}} / 2$		0.6	60		0.6	60		0.6	60	pA	
VICR	Common-mode input voltage range (see Note 5)		$\begin{array}{r} -0.2 \\ \text { to } \\ 4 \end{array}$	$\begin{array}{r} \hline-0.3 \\ \text { to } \\ 4.2 \end{array}$		$\begin{array}{r} -0.2 \\ \text { to } \\ 4 \end{array}$	$\begin{array}{r} -0.3 \\ \text { to } \\ 4.2 \end{array}$		$\begin{array}{r} -0.2 \\ \text { to } \\ 4 \end{array}$	$\begin{array}{r} \hline-0.3 \\ \text { to } \\ 4.2 \end{array}$		V	
V_{OH}	High-level output voltage	VID $=100 \mathrm{mV}$, See Note 6	3.2	3.8		3.2	4.1		3.2	3.9		V	
VOL	Low-level output voltage	V ID $=-100 \mathrm{mV}, \mathrm{IOL}=0$		0	50		0	50		0	50	mV	
AvD	Large-signal differential voltage amplification	$\mathrm{V}_{\mathrm{O}}=0.25 \mathrm{~V}$, See Note 6	5	23		50	700		25	170		V/mV	
CMRR	Common-mode rejection ratio	VIC $=\mathrm{V}_{\text {ICR }}$ min	65	80		65	94		65	91		dB	
kSVR	Supply-voltage rejection ratio ($\Delta \mathrm{V}_{\mathrm{DD}} / \Delta \mathrm{V}_{\mathrm{IO}}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \text { to } 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V} \end{aligned}$	65	95		70	97		70	93		dB	
IDD	Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD} / 2}, \\ & \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{DD} / 2}, \text { No load } \\ & \hline \end{aligned}$		1.4	3.2		0.02	0.034		0.21	0.56	mA	

operating characteristics, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		TLC252Y			TLC25L2Y			TLC25M2Y			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
	Slew rate at unity gain			$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF},$ See Note 6	$\begin{aligned} & \mathrm{V}_{1(\mathrm{PP})}=1 \mathrm{~V} \\ & \mathrm{~V}_{1(\mathrm{PP})}=2.5 \mathrm{~V} \end{aligned}$	3.6			0.03			0.43			V/us
		2.9				0.03			0.40						
V_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{S}}=20 \Omega$		2.5			68			32			$\mathrm{nV} \sqrt{ } / \mathrm{Hz}$	
BOM	Maximum outputswing bandwidth	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF},$	320			5			55			kHz		
B_{1}	Unity-gain bandwidth	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}$,	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	1.7			0.085			0.525			MHz		
ϕ_{m}	Phase margin	$\begin{aligned} & f=B_{1}, \\ & C_{L}=20 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV},$	46°			34°			40°					

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. For low-bias mode, $R_{L}=1 \mathrm{M} \Omega$; for medium-bias mode, $R_{L}=100 \mathrm{k} \Omega$, and for high-bias mode, $R_{L}=10 \mathrm{k} \Omega$.

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC252, TLC25L2, and TLC25M2 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

Figure 1. Unity-Gain Amplifier

Figure 2. Noise-Test Circuit

Figure 3. Gain-of-100 Inverting Amplifier

TYPICAL CHARACTERISTICS

Table of Graphs

				FIGURE
IDD	Supply current		vs Supply voltage vs Free-air temperature	$\begin{aligned} & 4 \\ & 5 \end{aligned}$
AVD	Large-signal differential voltage amplification	Low bias	vs Frequency	6
		Medium bias	vs Frequency	7
		High bias	vs Frequency	8
	Phase shift	Low bias	vs Frequency	6
		Medium bias	vs Frequency	7
		High bias	vs Frequency	8

Figure 4

SUPPLY CURRENT
VS
FREE-AIR TEMPERATURE

Figure 5

TYPICAL CHARACTERISTICS

LOW-BIAS LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY

Figure 6

MEDIUM-BIAS LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY

Figure 7

TYPICAL CHARACTERISTICS

HIGH-BIAS LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE SHIFT
vs
FREQUENCY

Figure 8

TLC252, TLC252A, TLC252B, TLC252Y, TLC25L2, TLC25L2A, TLC25L2B TLC25L2Y, TLC25M2, TLC25M2A, TLC25M2B, TLC25M2Y
 LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
 SLOS002I - JUNE 1983 - REVISED MARCH 2001

APPLICATION INFORMATION

latch-up avoidance

Junction-isolated CMOS circuits have an inherent parasitic PNPN structure that can function as an SCR. Under certain conditions, this SCR may be triggered into a low-impedance state, resulting in excessive supply current. To avoid such conditions, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the operational amplifier supplies should be applied simultaneously with, or before, application of any input signals.

output stage considerations

The amplifier's output stage consists of a source-follower-connected pullup transistor and an open-drain pulldown transistor. The high-level output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ is virtually independent of the IDD selection and increases with higher values of V_{DD} and reduced output loading. The low-level output voltage $\left(\mathrm{V}_{\mathrm{OL}}\right)$ decreases with reduced output current and higher input common-mode voltage. With no load, V_{OL} is essentially equal to the potential of $V_{D D-/ G N D . ~}^{\text {D }}$

supply configurations

Even though the TLC252/25_2C series is characterized for single-supply operation, it can be used effectively in a split-supply configuration if the input common-mode voltage $\left(\mathrm{V}_{\mathrm{ICR}}\right)$, output swing $\left(\mathrm{V}_{\mathrm{OL}}\right.$ and $\left.\mathrm{V}_{\mathrm{OH}}\right)$, and supply voltage limits are not exceeded.

circuit layout precautions

The user is cautioned that whenever extremely high circuit impedances are used, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup, as well as excessive dc leakages.

MECHANICAL DATA
D (R-PDSO-G**)
14 PINS SHOWN

PINS **	$\mathbf{8}$	$\mathbf{1 4}$	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
A MIN	0.189 $(4,80)$	0.337 $(8,55)$	0.386 $(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

[^0]MECHANICAL DATA
PW (R-PDSO-G**)

PIM	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
TLC252ACD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC252ACP	OBSOLETE	SOIC	D	8		None	Call TI	Call TI
TLC252BCD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC252BCDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC252BCP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
TLC252CD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC252CDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC252CP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
TLC252CPSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC252CPW	ACTIVE	TSSOP	PW	8	150	None	CU NIPDAU	Level-1-220C-UNLIM
TLC252CPWR	ACTIVE	TSSOP	PW	8	2000	None	CU NIPDAU	Level-1-220C-UNLIM
TLC25L2ACD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC25L2ACDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC25L2ACP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
TLC25L2BCD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC25L2BCDR	PREVIEW	SOIC	D	8	2500	None	Call TI	Call TI
TLC25L2BCP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
TLC25L2CD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC25L2CDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC25L2CP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
TLC25L2CPSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC25L2CPW	ACTIVE	TSSOP	PW	8	150	None	CU NIPDAU	Level-1-220C-UNLIM
TLC25L2CPWR	ACTIVE	TSSOP	PW	8	2000	None	CU NIPDAU	Level-1-220C-UNLIM
TLC25M2ACD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC25M2ACP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
TLC25M2BCD	OBSOLETE	SOIC	D	8		None	Call TI	Call TI
TLC25M2BCP	OBSOLETE	PDIP	P	8		None	Call TI	Call TI
TLC25M2CD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM

| Orderable Device | Status $^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLC25M2CDR | ACTIVE | SOIC | D | 8 | 2500 | Pb-Free
 (RoHS) | CU NIPDAU | Level-2-260C-1YEAR/
 Level-1-220C-UNLIM |
| TLC25M2CP | ACTIVE | PDIP | P | 8 | 50 | Pb-Free
 (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| TLC25M2CPSR | ACTIVE | SO | PS | 8 | 2000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-2-260C-1YEAR/
 Level-1-220C-UNLIM |
| TLC25M2CPW | ACTIVE | TSSOP | PW | 8 | 150 | None | CU NIPDAU | Level-1-220C-UNLIM |
| TLC25M2CPWLE | OBSOLETE | TSSOP | PW | 8 | | None | Call TI | Call TI |
| TLC25M2CPWR | ACTIVE | TSSOP | PW | 8 | 2000 | None | CU NIPDAU | Level-1-220C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
None: Not yet available Lead (Pb-Free).
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Falls within JEDEC MS-001

