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INTRODUCTION
Switch–mode off–line power conversion typically entails

a means of galvanic isolation from primary to secondary. In
most instances it includes a step–down high frequency
transformer, which aids in the voltage conversion necessary
from the high DC bulk voltage generated from the bridge
rectifier to the lower output DC voltage required by the end
application. If isolation is not a requirement of the
application, in which safety can be insured by mechanical
means, the additional cost of the transformer and
opto–coupler can be saved. The circuit describe herein is
proposed as a simple and low cost means to convert the AC
mains voltage to a lower DC voltage which may be used in

a variety different applications which include a
pre–regulator for a linear voltage regulator.

Circuit Description
The circuit shown below is a very low cost, universal AC

input, non–isolated converter employing a buck–boost
topology. The simple half–wave rectified AC input provides
a DC voltage to the bulk capacitor (C1), which is then
converted, to the semi–regulated DC voltage required on the
output. For this power level an LC �–filter was chosen to
meet conducted EMI requirements. This example describes
the design and analysis of a converter providing �8.0 VDC
at 0.4 A.

Figure 1. Non–Isolated Universal Input Buck–Boost Converter Employing the 60 kHz–NCP1200
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NCP1200
At the heart of the converter is the NCP1200 off–line

current–mode PWM converter IC. This controller features
a Dynamic Self–Supply (DSS) that allows it to be powered
directly from the high voltage rectified line voltage. This IC

also features a current–mode controller with skip cycle
capability, an internally set fixed frequency oscillator
(available in 40 kHz, 60 kHz and 100 kHz), extremely low
no–load standby power, and built–in frequency jittering for
reduced EMI.
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Figure 2. NCP1200 – Internal Circuit Architecture

Buck–Boost Topology
The basic Buck–Boost topology, shown below in

Figure 3, is typically attributed as an inverting circuit since
the output has the reverse polarity of the input voltage. More
commonly the isolated version of this converter (Flyback)
is used.

Figure 3. Buck–Boost Topology

PWM

The magnetic element in the Flyback converter simply
replaces the inductor in Figure 3 with a coupled inductor

with two or more winding and repositions the switch to the
low side to facilitate gate drive, which reveals the more
common off–line circuit topology.

Figure 4. Flyback Converter

PWM

The converter shown in Figure 1 is essentially the same
topology as Figure 3 except that the switching device has
been placed on the bottom rail and the polarity of the input
and output voltage has been reversed to produce a positive
output voltage from a negative input source.
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Derivation of the Output Characteristic Equation
This converter was designed to operate in discontinuous

conduction mode (DCM). As with all switched–mode
converter topologies the characteristics equation relating the
input to output voltage made be derived from a fundamental
analysis of the topological modes of the converter. The
modes of the converter are examined by redrawing the
circuit for each of the distinct cases of conduction of the
active and passive switches.

Figure 5. Topological Modes of the Buck–Boost
Converter in DCM
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In DCM, there are three distinct operating modes. In mode
I, the switch is “on” and the input source is connected to the
inductor, the output load is supported by the output capacitor
since the rectifier in this case is reverse–biased. During
mode II, the main switch (Q1) is turned off and the inductor
voltage acts as a source polarity switch and reverses it
voltage. This in turns causes D1 to conduct and the load
current is supported by the stored energy in the inductor. In
the third mode, neither the switch nor diode is conducting
since the inductor current has fallen to zero. In equilibrium
the volt–time product across the inductor during the first two
modes must be equal (shaded regions on Figure 6), this

information can be used to derive the input–output voltage
characteristic equation that is valid for both continuous and
discontinuous conduction–mode.

� Vin · ton � Vo · toff (1)

Vo
Vin

� �
ton
toff

(2)

Idealized converter waveforms for the all the pertinent
active and passive devices are shown in Figure 6. The
average diode current (ID) is the output load current (Io); an
expression for the output current may be derived as:

Io �
toff · Ipk

2 · Ts
(3)

Where Ts is the switching period, and Ipk is given as:

Ipk � Vin
L

· ton (4)

Combining terms and rearranging equation (3) and (4), we
can solve the “off–time” as a function of input voltage (Vin),
switch “on–time” (ton), switching period (Ts), inductance
(L) and load current (Io).

toff �
2 · Ts · L · Io

Vin · ton
(5)

The “off–time” can also be expressed as a function of the
switching period (Ts), inductance (L) and load resistance
(Ro). Simply substitute Ipk from equation (4) into the
equation for Io; equation (3), which yields:

Io � Vin ·
ton · toff
2 · Ts · L

(6)

Solving for |Vin| in equation (2) and substituting it into
(6) yields:

Io � Vo · toff
2 · 1

2 · Ts · L
(7)

Rearranging (7) and substituting Ro for Vo/Io, we find that
the “off–time” may be expressed as:

toff �
2 · Ts · L

Ro
� (8)

Another essential parameter of this converter is the duty
cycle (αD), which is the ratio of “on–time” to the switching
period (ton/Ts). The equation for the duty cycle is by solving
for the “on–time” in equation (2), and substituting the result
of toff from equation (5):

�D � 1
Vin

· 2 · Vo · Io · L
Ts

� (9)

Since, α = ton / Ts and (1–α) is toff / Ts, the expression for
the duty–cycle (αC) of a buck–boost converter is continuous
conduction mode (CCM) is load independent and may be
derived from (2) as:

�C � Vo
Vin � Vo

(10)
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Figure 6. Idealized Converter Waveforms
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Input Stage Design
A half–wave rectified input stage was selected to reduce

cost and overall part count. This basic circuit comprises of
a standard recovery rectifier and single high voltage
capacitor. The only constraint of this circuit is peak–to–peak
voltage ripple on the bulk capacitor and its affect on the
output. A smaller bulk capacitor will allow higher 120 Hz
ripple on the DC bulk voltage and depending on the loop
dynamics a higher amount of this frequency component on
the output voltage. Using the technique outlined in [1], we
find that a total bulk capacitance of 20 �F will suffice for this
circuit. Please note that a capacitor of with roughly half of
this capacitance would have been required had we opted to
use a full bridge rectifier. Figure 7 shows the PSPICE
simulation results for the bulk capacitor voltage with a
half–wave rectified input source at 100 VAC/60 Hz into the
input filter arrangement shown in Figure 1 with a constant
4.7 W load (assumes 75% efficiency).

The following chart tabulates the results of this simulation
for high and low line conditions maximum rated load.

Table 1. Input Filter Simulation Summary
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Vin
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

100 VAC/60 Hz
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

250 VAC/50 Hz
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Vmin
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

78.3 V
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

339 V
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Vmax
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

112.8 V
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

352.2 V
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

VavgDC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

96.4 V
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

344.7 V

Figure 7. Simulation Plot of the Bulk DC Capacitor at Low Line
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DC Analysis
The expected duty cycle of the converter can be computed

over the operating line range using the expressions we
derived above. The converter can be expected to operate
over a relatively broad range of duty–cycles, which span the
expected line and load range. At no–load and light load
conditions, the NCP1200 will enter into a skip–cycle mode
whereby the input power and peak current limit will be
significantly reduced. The inductor value was chosen to
maintain DCM operation for all operating conditions. An
expression for the critical inductance (inductance value at
the border between CCM and DCM) may be derived from
solving for L in equation 8:

Lc � Vo
Io

· (1� �)2 · Ts (11)

Solving the critical inductance equation above for low line
conditions (Vin = 96.4 VDC) and our load current and
output voltage, we find that the desired inductance to remain
in DCM must be less than 142 �H. Using this inductance
will cause the converter to operate at critical
conduction–mode; the operating duty cycle (α) at low line
is 7.7% (ton = 1.28 �sec). The design value of the inductor
in this example was chosen to be 120 �H. We can also find
that the peak switch and inductor current will stay relatively
constant over the line range at our rated load. The peak
switch current using an inductance of 120 �H (not
accounting for circuit losses) is 0.94 A.

Current Sense Resistor
Again using the guidelines from [1], we find that a suitable

value for the sense resistor is 1.0 Ω. The peak switch current
limit neglecting the propagation delay of the NCP1200 will
be approximately 0.9 V/1.0 Ω = 0.9 A. This value is
confirmed in the simulation results and breadboard example
of the circuit, which are discussed in subsequent sections.

Device Selection
The only design constraints for the MOSFET are its

drain–source voltage and drain current ratings. For this
design, the minimum VDS rating is VinMAX + Vo = 353 + 8
= 361 V, and minimum drain current rating of �1.0 Apk.
The breadboard example utilizes a ST–Micro STD2NB60E,
which has a VDS rating of 600 V, ID = 2.2 A with an rDSon
of 3.6 Ω. The output rectifier must be rated to handle the
average output load current of 0.4 A, a peak current of 0.9 A,
and a breakdown voltage of 293 V. A low cost leaded
ultrafast rectifier (1N4937) was chosen, which is rated at
600 V/1.0 A.

Output Voltage Regulation
The output voltage of this converter is regulated using a

zener diode and NPN transistor. The output voltage is the
zener voltage + the Vbe voltage–drop of the transistor. A
more precise output voltage can be achieved using a TL431,
which will also allow traditional loop compensation
techniques. Figure 8 depicts a possible implementation of
the TL431 shunt regulator for precise output voltage
regulation.

Figure 8. TL431 Implementation for Precise Output Voltage Regulation
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Compensating the zener regulator can be achieved by
adding an RC network from collector to base of the transistor
and/or adding a parallel capacitor to the resistor which is
between the zener and transistor base. This resistor not only
sets the bias conditions for the transistor and zener, but also
sets the open–loop gain of the circuit. The additional
capacitor across the base–collector of the transistor will help
roll off its inherent high frequency gain and more
importantly the converter.

Simulation Results
The following plots are results of a transient simulation

performed on PSPICE. The simulation schematic is shown
in Figure 9, followed by plots of the output voltage,
drain–source voltage, current sense resistor voltage and
inductor current.

Figure 9. PSPICE Simulation Schematic
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Figure 10. Simulation Results – Output Voltage, Current Sense Voltage, and Inductor Current
Vin = 96.4 VDC, Ro – 20 �
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Figure 11. Simulation Results – MOSFET Drain–Source Voltage
Vin = 96.4 VDC, Ro – 20 �
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Figure 12. Simulation Results – Output Voltage, Current Sense Voltage, and Inductor Current
Vin = 353 VDC, Ro – 20 �
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Figure 13. Simulation Results – MOSFET Drain–Source Voltage
Vin = 353 VDC, Ro – 20 �
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Actual Hardware Oscillographs and
Performance Summary

The circuit shown in Figure 1 was built to validate the
analysis and verify operating specifications. The following
plots show the output voltage at full load and no–load, as

well as the drain–source voltage, current sense resistor
voltage, and bulk DC voltage at full load. A figure showing
regulation voltage over the line and load range is shown in
Figure 18.

Figure 14. Hardware Oscillograph – Current Sense
Resistor Voltage

Vin = 100 VAC/60 Hz, Ro – 20 �

Figure 15. Hardware Oscillograph – VD
 Voltage Waveform

Vin = 100 VAC/60 Hz, Ro – 20 �

Figure 16. Hardware Oscillograph – Output Voltage
Vin = 100 VAC/60 Hz, Ro – 20 �

Figure 17. Hardware Oscillograph – Bulk DC Voltage
with Respect to Circuit GND

Vin = 100 VAC/60 Hz, Ro – 20 �
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Figure 18. Hardware Operating Characteristics (Line/Load Regulation)
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PCB
The complete bill of material and PCB component

silkscreen and artwork layers are shown for the NCP1200

design example. The PCB is a single sided CEM1 chosen for
its low manufacturing cost.

BILL OF MATERIAL

Ref Des Part No. Part Description Manufacturer Geometry

R1, R2 – 2.2 �� 1/4 W Metal Film Leaded – Axial

R3 – 220 �, 1/8 W Metal Film Leaded – Axial

R4 – 1.0 �, 1/2 W – Axial

C1, C2 URS2G100MHA 10 �F, 400 V, Alum. Electrolytic Nichicon 16 x 15 mm

C3 – 470 pF, 50 V, Monolithic Ceramic Disc – –

C4 – 0.01 �F, 50 V, Monolithic Ceramic Disc – –

C5 – 220 pF, 1.0 kV, Monolithic Ceramic Disc – –

C6 UHC1C220MDR 22 �F, 16 V, Alum. Electrolytic Nichicon 5 x 7 mm

C7 UHC1C101MDR 100 �F, 16 V, Alum. Electrolytic Nichicon 6.3 x 11 mm

L1, L2 9130–28 2.2 �H, 395 mA, RDC = 0.4 �,
Axial Leaded Molded RF Choke

JW Miller Magnetics
www.jwmiller.com

Axial

L3 – 120 �H, 1.5 A – –

D1 1N4006 Standard Recovery 800 V, 1.0 A On Semiconductor Case 59–03

D2 1N5924B Zener Voltage Regulator, 9.1 V, 3.0 W On Semiconductor Case 59–04

D3 1N4937 Fast Recovery Diode, 600 V, 1.0 A On Semiconductor Case 59–03

Q1 STD2NB60 N–Channel MOSFET, 600 V/3.6 � STMicroelectronics I–PAK

Q2 2N3904A General Purpose, NPN, 30 V/100 mA On Semiconductor TO–92

U1 NCP1200 Off–Line Current Mode PWM Controller IC On Semiconductor DIP–8
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Figure 19. PCB Silkscreen and Artwork
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Alternate Embodiment
The circuit shown in Figure 1 is a non–isolated off–line

converter with a key deficiency is some applications, in the
fact that both the line (hot) and neutral AC inputs are
switched. The MOSFET drain (switching node) is
connected to the neutral and the line (hot) is tied to a rectifier,

necessary to develop the required DC voltage for
conversion. This configuration has potentially serious safety
issues. For safety, the circuit shown below maintains a
ground referenced neutral line and which is common to the
output return.

NCP1200
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CS DRV

GND VCC

8

253

4

+

– (GND)

6

+

Nuetral AC

+

+

FB

Line (Hot)

Figure 20. 

In this circuit transformation, the MOSFET source is tied
to the line and the neutral is at ground potential. In order to
regulate the output voltage, an opto–coupler must be used in
the feedback loop to overcome differences in the

common–mode voltage potentials between the output and
FB pin of the control IC. This is due to the fact that the
NCP1200 is now referenced to the rectified AC line (hot).
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Conclusion
This paper detailed the design and analysis, including

device selection criteria, for a non–isolated off–line
buck–boost converter. The NCP1200 series offers sufficient

flexibility to configure this topology for various output
voltage and power requirements. Alternatively, the
NCP105x series of off–line gated–oscillator ICs may also be
used in this topology.

Figure 21. Adaptation with the NCP1052B
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The NCP105x series feature an on–chip 700 V power
switch, a unique dual–edge gated oscillator for extremely
fast loop response, high voltage start–up and operation,
frequency dithering for reduced EMI filtering, and an
internally set frequency options (44, 100 and 136 kHz). The
distinct advantage of this IC in this converter is the lower
overall part count since the MOSFET and current sensing
resistor are internalized. The NCP105x series and its
derivatives are offered in a wide variety and combinations
of switching frequency and peak current limits. In either
case whether it be a NCP1200 or NCP105x, the key features
and attributes of these ICs make them uniquely suitable to
configure this topology for very low cost off–line power
conversion.
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