General Purpose Transistors PNP Silicon

2N4403

ON Semiconductor Preferred Device

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/⁰C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/ºC
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

1 EMITTER

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage ⁽¹⁾ ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	40	-	Vdc	
Collector–Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	V(BR)CBO	40	-	Vdc	
Emitter–Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	5.0	_	Vdc	
Base Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	IBEV	_	0.1	μAdc	
Collector Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	ICEX	—	0.1	μAdc	

1. Pulse Test: Pulse Width $\leq 300~\mu s,$ Duty Cycle $\leq 2.0\%.$

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.

Characteristic	Symbol	Min	Max	Unit		
ON CHARACTERISTICS						
DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 1.0 Vdc) (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 150 mAdc, V _{CE} = 2.0 Vdc)(1) (I _C = 500 mAdc, V _{CE} = 2.0 Vdc)(1)	hfe	30 60 100 100 20	 	_		
Collector–Emitter Saturation Voltage ⁽¹⁾ (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	VCE(sat)		0.4 0.75	Vdc		
Base–Emitter Saturation Voltage ⁽¹⁾ ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)	VBE(sat)	0.75 —	0.95 1.3	Vdc		
SMALL-SIGNAL CHARACTERISTICS						
Current–Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	200	_	MHz		
Collector–Base Capacitance (V_{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}		8.5	pF		
Emitter–Base Capacitance ($V_{EB} = 0.5$ Vdc, $I_C = 0$, f = 1.0 MHz)	C _{eb}		30	pF		
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	1.5 k	15 k	ohms		
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{re}	0.1	8.0	X 10 ⁻⁴		
Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	60	500	_		
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{OE}	1.0	100	μmhos		
SWITCHING CHARACTERISTICS	ł					

Delay Time	(V _{CC} = 30 Vdc, V _{BE} = +2.0 Vdc,	td	—	15	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	tr	-	20	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _S	-	225	ns
Fall Time	I _{B1} = 15 mA, I _{B2} = 15 mA)	t _f	_	30	ns

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUIT

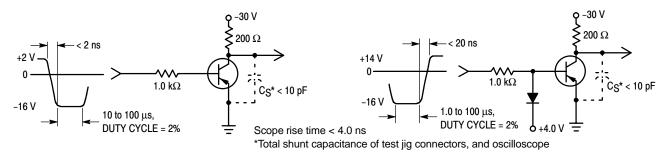
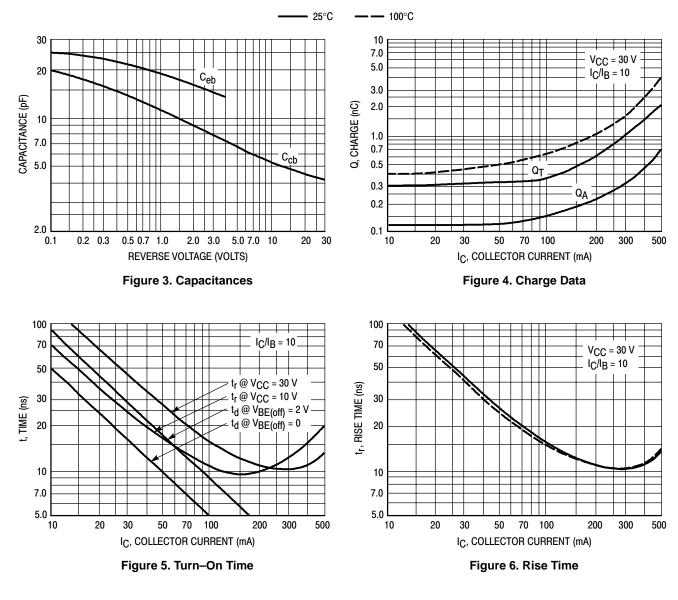
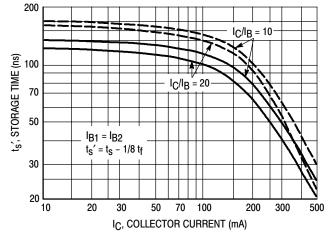
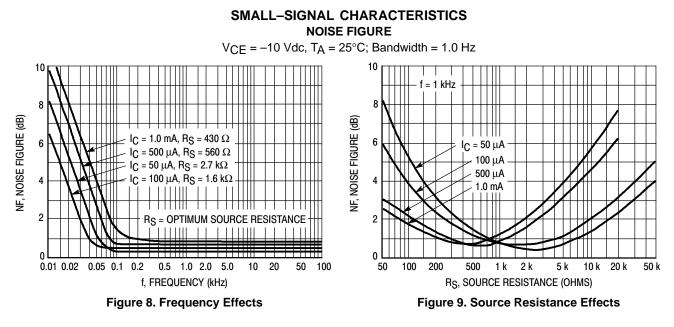
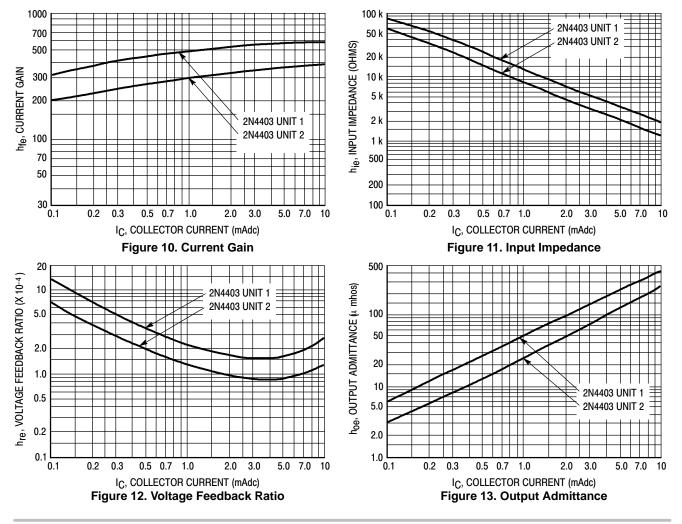



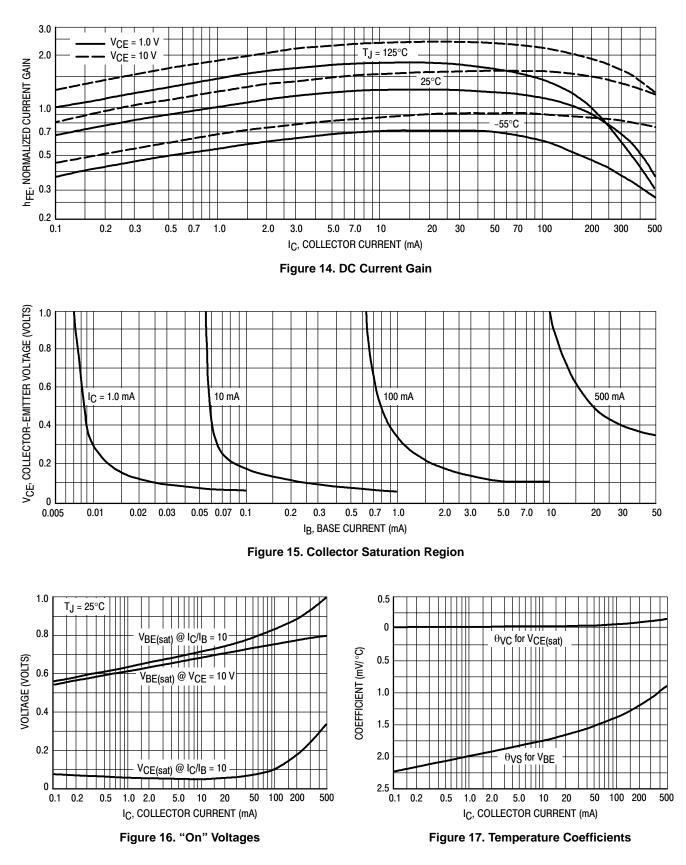
Figure 1. Turn–On Time

Figure 2. Turn–Off Time

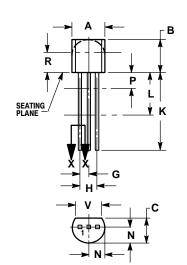




Figure 7. Storage Time

h PARAMETERS VCE = -10 Vdc, f = 1.0 kHz, T_A = 25°C


This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high–gain and a low–gain unit were

selected from the 2N4403 lines, and the same units were used to develop the correspondingly–numbered curves on each graph.


http://onsemi.com

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AL

TYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
Ν	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

<u>Notes</u>

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and to officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.