BAV23CLT1G, BAV23CLT3G

Dual High Voltage Common Cathode Switching Diode

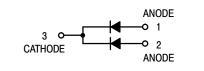
Features

- Moisture Sensitivity Level: 1
- ESD Rating Human Body Model: Class 2 – Machine Model: Class C
- Fast Switching Speed
- Switching Application
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

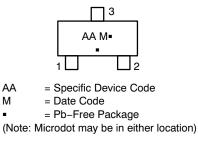
Typical Applications

- LCD TV
- Power Supply
- Industrial

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Continuous Reverse Voltage	V _R	250	V
Repetitive Peak Reverse Voltage	V _{RRM}	250	V
Peak Forward Current	١ _F	400	mA
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	I _{FSM}	9.0 3.0 1.7	A
Peak Forward Surge Current	I _{FM(surge)}	625	mAdc
Non-Repetitive Peak Per Human Body Model Per Machine Model	HBM MM	4.0 400	kV V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

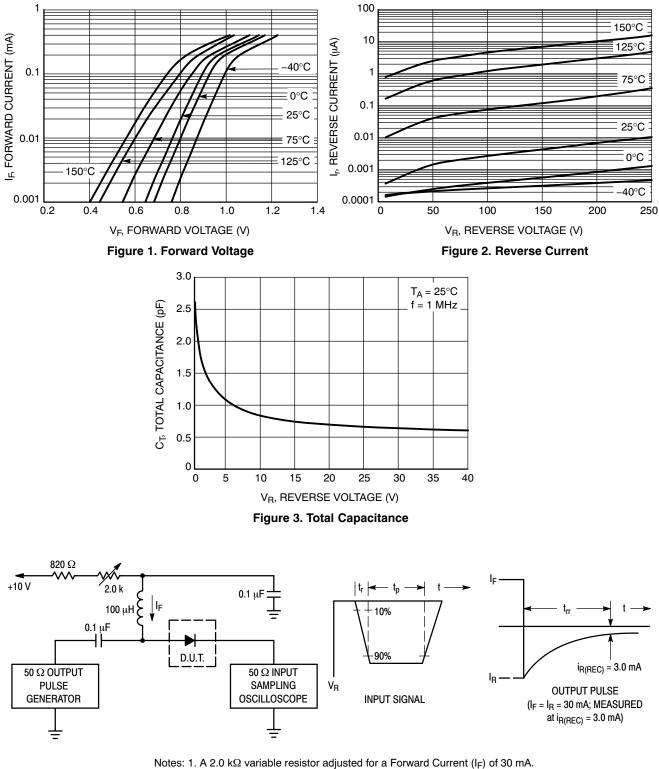
ORDERING INFORMATION

Device	Package	Shipping [†]
BAV23CLT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
BAV23CLT3G	SOT-23 (Pb-Free)	10000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BAV23CLT1G, BAV23CLT3G

THERMAL CHARACTERISTICS

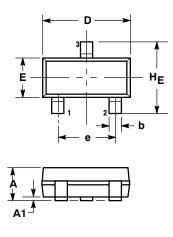

Characteristic	Symbol	Max	Unit
SINGLE HEATED		-	•
Total Device Dissipation (Note 1) T _A = 25°C Derate above 25°C	PD	265 2.1	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{θJA}	472	°C/W
Thermal Reference, Junction-to-Anode Lead (Note 1)	R_ψ _{JL}	263	°C/W
Thermal Reference, Junction-to-Case (Note 1)	R_ _{yJC}	289	°C/W
Total Device Dissipation (Note 2) T _A = 25°C Derate above 25°C	PD	345 2.7	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{θJA}	362	°C/W
Thermal Reference, Junction-to-Anode Lead (Note 2)	R_ψ _{JL}	251	°C/W
Thermal Reference, Junction-to-Case (Note 2)	R_ψ _{JC}	250	°C/W
DUAL HEATED (Note 3)			
Total Device Dissipation (Note 1) T _A = 25°C Derate above 25°C	PD	390 3.1	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{θJA}	321	°C/W
Thermal Reference, Junction-to-Anode Lead (Note 1)	R_ψ _{JL}	159	°C/W
Thermal Reference, Junction-to-Case (Note 1)	R_ _{yJC}	138	°C/W
Total Device Dissipation (Note 2) T _A = 25°C Derate above 25°C	PD	540 4.3	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{θJA}	231	°C/W
Thermal Reference, Junction-to-Anode Lead (Note 2)	R_y _{JL}	148	°C/W
Thermal Reference, Junction-to-Case (Note 2)	R_ _{yJC}	119	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

FR-4 @ 100 mm², 1 oz. copper traces, still air.
FR-4 @ 500 mm², 2 oz. copper traces, still air.
Dual heated values assume total power is sum of two equally powered channels

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit			
OFF CHARACTERISTICS							
Reverse Voltage Leakage Current ($V_R = 200 \text{ Vdc}$) ($V_R = 200 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$)	I _R		0.1 100	μAdc			
Reverse Breakdown Voltage (I_{BR} = 100 μ Adc)	V _(BR)	250	-	Vdc			
Forward Voltage (I _F = 100 mAdc) (I _F = 200 mAdc)	V _F		1000 1250	mV			
Diode Capacitance ($V_R = 0, f = 1.0 \text{ MHz}$)	CT	-	5.0	pF			
Reverse Recovery Time ($I_F = I_R = 30$ mAdc, $R_L = 100 \Omega$)	t _{rr}	-	150	ns			

BAV23CLT1G, BAV23CLT3G



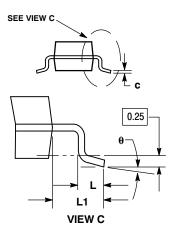
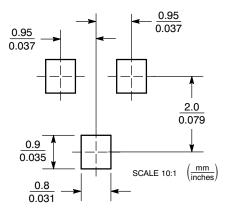

2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 30 mA.

Figure 4. Recovery Time Equivalent Test Circuit

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AP


- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2
- 3.
- CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

4.	DIME	NSIONS D	AND E	DO N	1OT	INCLU	JDE M	OLD F	FLASH,	
	PROT	FRUSIONS	, OR G	ATE B	URF	RS.				

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
c	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
Ш	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
ΗE	2.10	2.40	2.64	0.083	0.094	0.104
θ	0°		10°	0°		10°

STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHO CATHODE

SOLDERING FOOTPRINT

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, inclinent damages. Typical[®] parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situent owner personal injury or death may occur. Should Buyer purchase or uses SCILLC for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers parameters are subscitaries, costs, damages and expenses and reasonable attorney trees arising out of directly or indirectly its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

Sales Representative