General Purpose Transistor Array One Differentially Connected Pair and Three Isolated Transistor Arrays

The MC3346 is designed for general purpose, low power applications for consumer and industrial designs.

Symbol

VCEO

VCBO

 V_{EB}

Vcio

 I_{C}

PD

ΤA

T_{sta}

Value

15

20

5.0

20

50

1.2

10

-40 to +85

-65 to +150

Unit

Vdc

Vdc

Vdc

Vdc

mAdc

W mW/°C

> °C ℃

• Guaranteed Base-Emitter Voltage Matching

MAXIMUM RATINGS

Collector-Emitter Voltage

Collector-Base Voltage

Derate above 25°C

Collector-Substrate Voltage

Collector Current - Continuous

Operating Temperature Range

Storage Temperature Range

Total Power Dissipation @ T_A = 25°C

Emitter-Base Voltage

Rating

- Operating Current Range Specified: 10 µA to 10 mA
- Five General Purpose Transistors in One Package

GENERAL PURPOSE TRANSISTOR ARRAY

SEMICONDUCTOR TECHNICAL DATA

P SUFFIX PLASTIC PACKAGE CASE 646

D SUFFIX PLASTIC PACKAGE CASE 751A (SO-14)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3346D	T 40° to 185°C	SO-14
MC3356P	$T_{\rm A} = -40^{-10} + 65^{-10}$	Plastic DIP

PIN CONNECTIONS

Pin 13 is connected to substrate and must remain at the lowest circuit potential.

© Semiconductor Components Industries, LLC, 2001 May, 2001 – Rev. 1

EL	ECTRICAL	CHARACTERISTICS	$(T_A =$	+25°C,	unless otherwise noted.))
----	----------	-----------------	----------	--------	--------------------------	---

Characteristics	Symbol	Min	Тур	Мах	Unit
STATIC CHARACTERISTICS					
Collector–Base Breakdown Voltage $(I_C = 10 \ \mu Adc)$	V _{(BR)CBO}	20	60	-	Vdc
Collector–Emitter Breakdown Voltage (I _C = 1.0 mAdc)	V _{(BR)CEO}	15	-	-	Vdc
Collector–Substrate Breakdown Voltage $(I_C = 10 \ \mu A)$	V _{(BR)CIO}	20	60	-	Vdc
Emitter–Base Breakdown Voltage (I _E = 10 μAdc)	V _{(BR)EBO}	5.0	7.0	-	Vdc
Collector–Base Cutoff Current ($V_{CB} = 10 \text{ Vdc}, I_E = 0$)	I _{CBO}	-	-	40	nAdc
DC Current Gain	h _{FE}				_
(I _C = 10 mAdc, V _{CE} = 3.0 Vdc)		-	140	-	
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 3.0 \text{ Vdc})$		40	130	-	
$(I_C = 10 \ \mu\text{Adc}, \ V_{CE} = 3.0 \ \text{Vdc})$	N/	_	00	-	Vala
Base-Emitter voltage ($V_{cr} = 3.0 \text{ Vdc}$ $I_r = 1.0 \text{ mAdc}$)	VBE	_	0.72	_	Vac
$(V_{CE} = 3.0 \text{ Vdc}, I_E = 10 \text{ mAdc})$ (V _{CE} = 3.0 Vdc, I _E = 10 mAdc)		_	0.8	_	
Input Offset Current for Matched Pair Q1 and Q2 ($V_{CE} = 3.0 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}$)	I _{IO1} – I _{IO2}	-	0.3	2.0	μAdc
Magnitude of Input Offset Voltage ($V_{CE} = 3.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}$)	-	-	0.5	5.0	mVdc
Temperature Coefficient of Base–Emitter Voltage ($V_{CE} = 3.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}$)	ΔV _{BE} DT	-	-1.9	-	mV/°C
Temperature Coefficient	$\frac{ \Delta V_{IO} }{D_{T}}$	-	1.0	-	μV/°C
Collector–Emitter Cutoff Current ($V_{CE} = 10 \text{ Vdc}, I_B = 0$)	I _{CEO}	-	-	0.5	μAdc
DYNAMIC CHARACTERISTICS					
Low Frequency Noise Figure (V_{CE} = 3.0 Vdc, I_C = 100 μ Adc, R_S = 1.0 k Ω , f = 1.0 kHz)	NF	-	3.25	-	dB
Forward Current Transfer Ratio (V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{FE}	-	110	-	-
Short Circuit Input Impedance ($V_{CE} = 3.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}$)	h _{ie}	-	3.5	-	kΩ
Open Circuit Output Impedance (V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc)	h _{oe}	-	15.6	-	μmhos
Reverse Voltage Transfer Ratio ($V_{CE} = 3.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}$)	h _{re}	-	1.8	-	x10 ⁻⁴
Forward Transfer Admittance ($V_{CE} = 3.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ MHz}$)	Уfe	-	31–j1.5	-	-
Input Admittance ($V_{CE} = 3.0 \text{ Vdc}$, $I_C = 1.0 \text{ mAdc}$, f = 1.0 MHz)	Уie	-	0.3 + j0.04	-	-
Output Admittance ($V_{CE} = 3.0 \text{ Vdc}$, $I_C = 1.0 \text{ mAdc}$, f = 1.0 MHz)	У _{ое}	-	0.001 + j0.03	-	-
Current–Gain – Bandwidth Product ($V_{CE} = 3.0 \text{ Vdc}, I_C = 3.0 \text{ mAdc}$)	f _T	300	550	-	MHz
Emitter–Base Capacitance ($V_{EB} = 3.0 \text{ Vdc}, I_E = 0$)	C _{eb}	-	0.6	-	pF
Collector–Base Capacitance ($V_{CB} = 3.0 \text{ Vdc}, I_C = 0$)	C _{cb}	_	0.58	_	pF
Collector–Substrate Capacitance $(V_{CS} = 3.0 \text{ Vdc}, I_C = 0)$	C _{CI}	-	2.8	-	pF

PACKAGE DIMENSIONS

P SUFFIX PLASTIC PACKAGE CASE 646-06 **ISSUE M**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. BOUNDED CORNERS OPTIONAL.

5.	ROUNDED CORNERS OPTIONAL.					
		INC	HES	MILLIMETERS		
	DIM	MIN MAX		MIN	MAX	
	Α	0.715	0.770	18.16	18.80	
	В	0.240	0.260	6.10	6.60	
	С	0.145	0.185	3.69	4.69	
	D	0.015	0.021	0.38	0.53	
	F	0.040	0.070	1.02	1.78	
	G	0.100	BSC	2.54	BSC	
	Н	0.052	0.095	1.32	2.41	
	J	0.008	0.015	0.20	0.38	
	K	0.115	0.135	2.92	3.43	
	L	0.290	0.310	7.37	7.87	
	М		10°		10°	
	Ν	0.015	0.039	0.38	1.01	

PACKAGE DIMENSIONS

D SUFFIX PLASTIC PACKAGE CASE 751A-03 (SO-8) ISSUE F

NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	8.55	8.75	0.337	0.344			
В	3.80	4.00	0.150	0.157			
C	1.35	1.75	0.054	0.068			
D	0.35	0.49	0.014	0.019			
F	0.40	1.25	0.016	0.049			
G	1.27 BSC		0.050 BSC				
J	0.19	0.25	0.008	0.009			
K	0.10	0.25	0.004	0.009			
Μ	0 °	7°	0 °	7°			
Р	5.80	6.20	0.228	0.244			
R	0.25	0.50	0.010	0.019			

Notes

Notes

ON Semiconductor and **O** are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and hold SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.