
Switching Transistor PNP Silicon

MAXIMUM RATINGS

III/Juliioiii TATIITOO					
Rating	Symbol	Value	Unit		
Collector-Emitter Voltage	VCEO	-25	Vdc		
Collector-Emitter Voltage	VCES	-25	Vdc		
Collector-Base Voltage	VCBO	-25	Vdc		
Emitter-Base Voltage	VEBO	-4.0	Vdc		
Collector Current — Continuous	IC	-500	mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C		

MPS3638A

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}^{(1)}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{ heta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•			
Collector–Emitter Breakdown Voltage (I _C = –100 μAdc, V _{BE} = 0)	V(BR)CES	-25	_	Vdc
Collector-Emitter Sustaining Voltage ⁽²⁾ $(I_C = -10 \text{ mAdc}, I_B = 0)$	VCEO(sus)	-25	_	Vdc
Collector-Base Breakdown Voltage (I _C = -100 μAdc, I _E = 0)	V(BR)CBO	-25	_	Vdc
Emitter-Base Breakdown Voltage (IE = -100 μAdc, IC = 0)	V(BR)EBO	-4.0	_	Vdc
Collector Cutoff Current (VCE = -15 Vdc, VBE = 0) (VCE = -15 Vdc, VBE = 0, TA = -65° C)	ICES	_ _	-0.035 -2.0	μAdc
Emitter Cutoff Current $(V_{EB} = -3.0 \text{ V}, I_{C} = 0)$	I _{EBO}	_	-35	nA
Base Current $(V_{CE} = -15 \text{ Vdc}, V_{BE} = 0)$	IB	_	-0.035	μAdc

- 1. $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.
- 2. Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

(Replaces MPS3638/D)

MPS3638A

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted) (Continued)

	Symbol	Min	Max	Unit	
ON CHARACTER	RISTICS(2)	•			
DC Current Gain $(I_C = -1.0 \text{ mAdc},$ $(I_C = -10 \text{ mAdc},$ $(I_C = -50 \text{ mAdc},$ $(I_C = -300 \text{ mAdc})$	hFE	80 100 100 20	_ _ _ _	_	
Collector – Emitter S (IC = -50 mAdc, (IC = -300 mAdc)	VCE(sat)	_	-0.25 -1.0	Vdc	
Base – Emitter Satu (IC = –50 mAdc, (IC = –300 mAdd	VBE(sat)	 _0.80	-1.1 -2.0	Vdc	
SMALL-SIGNAL	CHARACTERISTICS				
Current-Gain — B (VCE = -3.0 Vdc	andwidth Product $f_{c} = -50 \text{ mAdc}, f = 100 \text{ MHz}$	f _T	150	_	MHz
Output Capacitance (V _{CB} = -10 Vdc,	C _{obo}	_	10	pF	
Input Capacitance (V _{EB} = -0.5 Vdc	C _{ibo}	_	25	pF	
Input Impedance (I _C = -10 mAdc,	Input Impedance (I _C = -10 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)			2000	kΩ
Voltage Feedback (IC = -10 mAdc,	h _{re}	_	15	X 10 ⁻⁴	
Small–Signal Curre (I _C = –10 mAdc,	h _{fe}	100	_	_	
Output Admittance (I _C = -10 mAdc,	h _{oe}	_	1.2	mmhos	
SWITCHING CHA	ARACTERISTICS				
Delay Time	(V _{CC} = -10 Vdc, I _C = -300 mAdc, I _{B1} = -30 mAdc)	t _d	_	20	ns
Rise Time	(*CC = 10 vac, 1C = 300 III/ac, 1B1 = -30 III/ac)	t _r	_	70	ns
Storage Time	$(V_{CC} = -10 \text{ Vdc}, I_{C} = -300 \text{ mAdc},$	t _S	_	140	ns
Fall Time	$I_{B1} = -30 \text{ mAdc}, I_{B2} = -30 \text{ mAdc})$	t _f	_	70	ns
Turn-On Time	urn–On Time (I _C = -300 mAdc , I _{B1} = -30 mAdc)		_	75	ns
Turn–Off Time $(I_C = -300 \text{ mAdc}, I_{B1} = -30 \text{ mAdc}, I_{B2} = 30 \text{ mAdc})$		t _{off}		170	ns

^{2.} Pulse Test: Pulse Width \leq 300 $\mu s;$ Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUIT

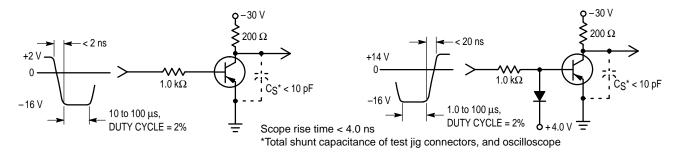
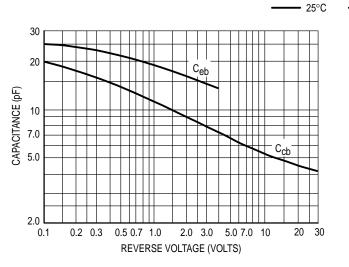



Figure 1. Turn-On Time

Figure 2. Turn-Off Time

TRANSIENT CHARACTERISTICS

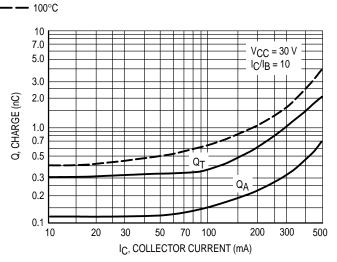
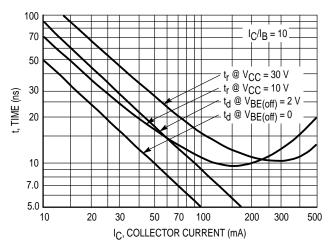



Figure 4. Charge Data

TRANSIENT CHARACTERISTICS (Continued)

—— 25°C —— 100°C

100 70 $V_{CC} = 30 \text{ V}$ $I_{C}/I_{B} = 10$ 50 t_r, RISE TIME (ns) 30 20 10 7.0 5.0 10 20 50 70 100 300 500 IC, COLLECTOR CURRENT (mA)

Figure 5. Turn-On Time

Figure 6. Rise Time

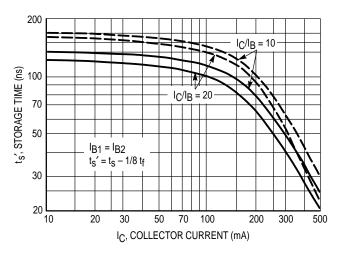
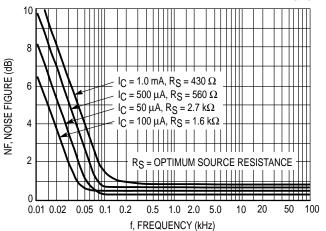


Figure 7. Storage Time

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

 $V_{CE} = -10 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ Bandwidth = 1.0 Hz



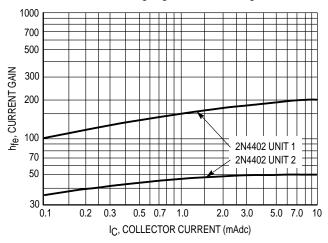

Figure 8. Frequency Effects

Figure 9. Source Resistance Effects

h PARAMETERS

 $V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$

This group of graphs illustrates the relationship between hfe and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were

selected from the 2N4402 line, and the same units were used to develop the correspondingly–numbered curves on each graph.

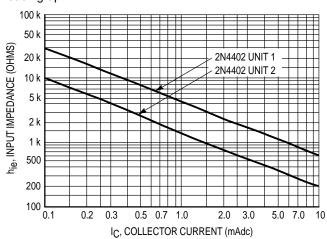


Figure 10. Current Gain

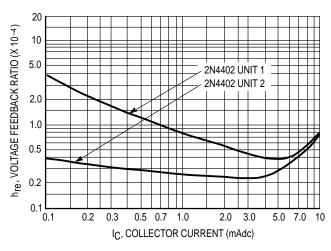


Figure 12. Voltage Feedback Ratio

Figure 11. Input Impedance

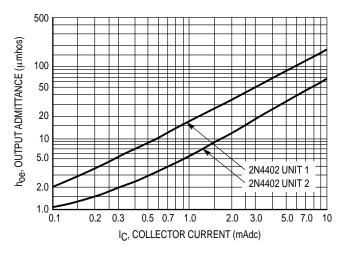


Figure 13. Output Admittance

STATIC CHARACTERISTICS

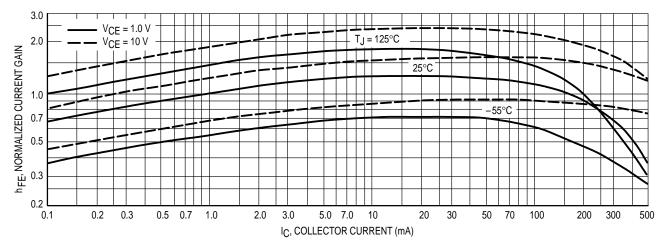


Figure 14. DC Current Gain

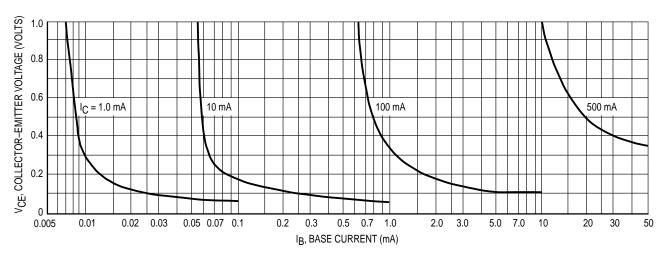


Figure 15. Collector Saturation Region

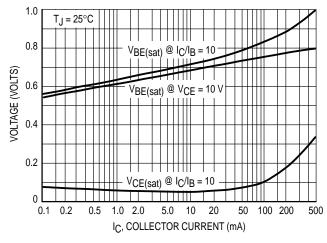
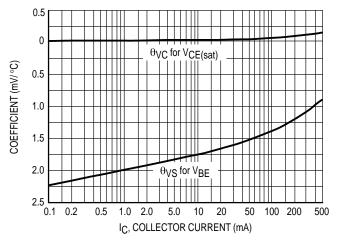
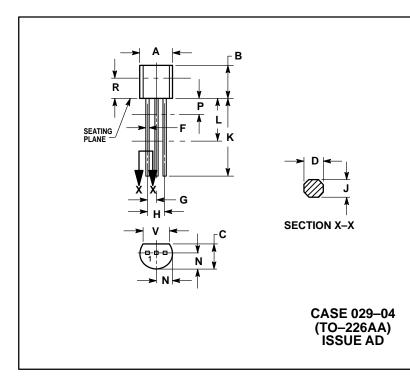




Figure 16. "On" Voltages

Figure 17. Temperature Coefficients

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J. APPLY BETWEEN L AND K. MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 – US & Canada ONLY 1–800–774–1844

TOUCHTONE 602–244–6609
 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
 US & Canada ONLY 1–800–774–1848
 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

Mfax is a trademark of Motorola. Inc.

INTERNET: http://motorola.com/sps

MPS3638A/D