

MICROCIRCUIT DATA SHEET

MNLM185BY-1.2-X REV 0B0

Original Creation Date: 08/15/95 Last Update Date: 02/25/03 Last Major Revision Date: 08/15/95

MICROPOWER VOLTAGE REFERENCE DIODE

General Description

The LM185BY-1.2 is a micropower 2-terminal band-gap voltage regulator diode. Operating over a 10 uA to 20 mA current range, it features exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185BY-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185BY-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM185BY-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

NS Part Numbers

LM185BYH1.2-SMD

LM185BYH1.2/883

Industry Part Number

LM185BY

Prime Die

LM185

Controlling Document

SEE FEATURES SECTION:

Subgrp	Description	Temp ($^{\circ}$ C)
1	Static tests at	+25 +125
3	Static tests at	+125 -55 +25
5	Dynamic tests at	+125 -55
7	Functional tests at	+25 +125
8B	Functional tests at	-55 +25
9 10 11	Switching tests at Switching tests at Switching tests at	+25 +125 -55
	1 2 3 4 5 6 7 8 8 8 8 9 10	 2 Static tests at 3 Static tests at 4 Dynamic tests at 5 Dynamic tests at 6 Dynamic tests at 7 Functional tests at 8A Functional tests at 8B Functional tests at 9 Switching tests at 10 Switching tests at

.

Features

- Operating current of 10 uA to 20 mA.
- 1.0 Ohms max dynamic impedance (Typical).
- Low temperature coefficient.
- Low voltage reference-1.235V.
- CONTROLLING DOCUMENT: LM185BYH1.2-SMD 5962-8759405XA

MICROCIRCUIT DATA SHEET

MNLM185BY-1.2-X REV 0B0

Original Creation Date: 08/15/95 Last Update Date: 02/25/03 Last Major Revision Date: 08/15/95

MICROPOWER VOLTAGE REFERENCE DIODE

General Description

The LM185BY-1.2 is a micropower 2-terminal band-gap voltage regulator diode. Operating over a 10 uA to 20 mA current range, it features exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185BY-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185BY-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM185BY-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

Industry Part Number

LM185BY

Prime Die

LM185

Controlling Document

SEE FEATURES SECTION:

.

Processing	Subgrp	Description	Temp (°C)
MIL-STD-883, Method 5004	1	Static tests at	+25
	2	Static tests at	+125
	3	Static tests at	-55
Quality Conformance Inspection	4	Dynamic tests at	+25
Z	5	Dynamic tests at	+125
MIL-STD-883, Method 5005	6	Dynamic tests at	-55
MIE-SID-005, Method 5005	7	Functional tests at	+25
	8A	Functional tests at	+125
	8B	Functional tests at	-55
	9	Switching tests at	+25
	10	Switching tests at	+125
	11	Switching tests at	-55

н.

NS Part Numbers

. .

. . .

LM185BYH1.2-SMD LM185BYH1.2/883

Features

- Operating current of 10 uA to 20 mA.
- 1.0 Ohms max dynamic impedance (Typical).
- Low temperature coefficient.
- Low voltage reference-1.235V.
- CONTROLLING DOCUMENT: LM185BYH1.2-SMD 5962-8759405XA

(Absolute Maximum Ratings)

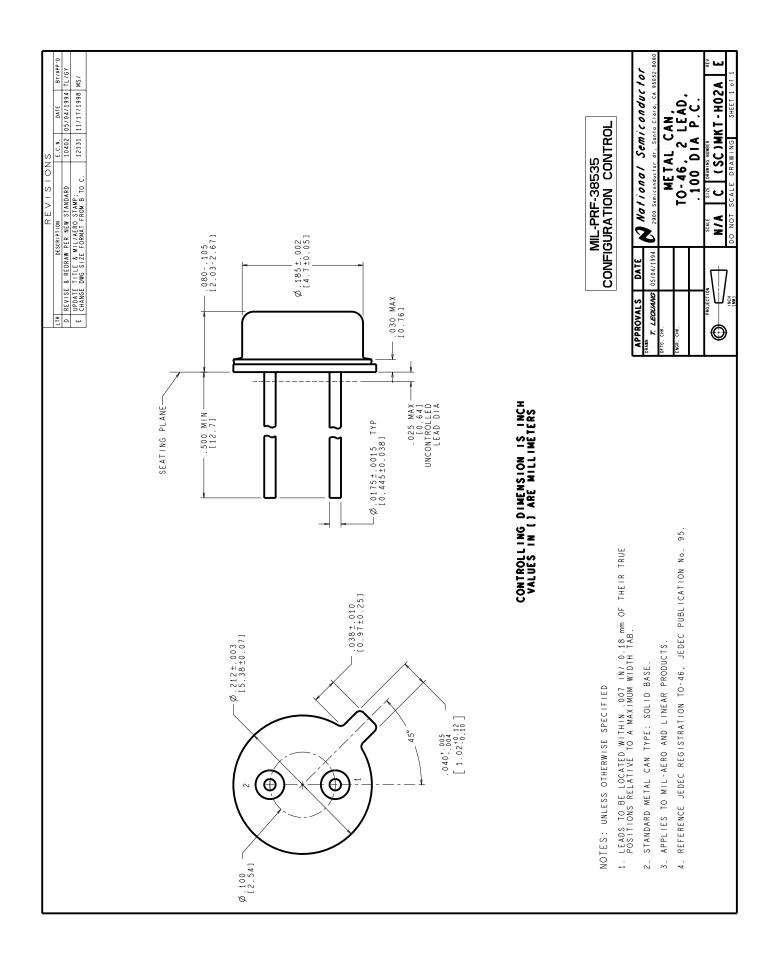
(Note 1)

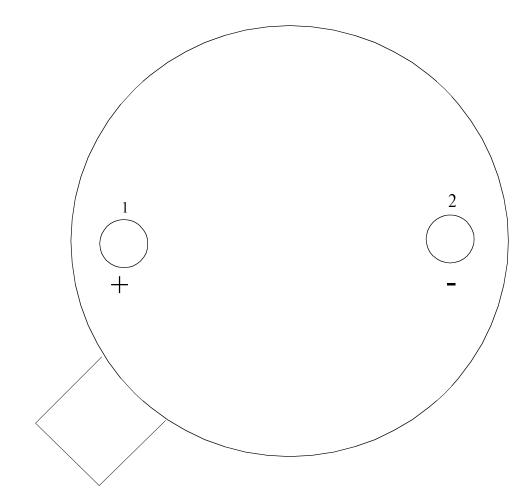
Reverse Current	
Forward Current	30mA
Forward Current	10mA
Operating Temperature Range	
Maximum Junction Temperature	-55 C to +125 C
Maximum Sunction Temperature	150 C
Storage Temperature	-55 C to +150 C
Lead Temperature	-55 C LO +150 C
(Soldering, 10 seconds)	300 C
Thermal Resistance ThetaJA	
H-Pkg (Still Air)	300 C/W
H-Pkg (500LF/Min Air flow)	139 C/W
ThetaJC H-Pkg	57 C/W
Package Weight	57 C/W
(Typical) H-Pkg	TBD
ESD Tolerance	
(Note 2)	4000V
	40000

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Note 2: Human body model, 1.5k Ohms in series with 100pF

Electrical Characteristics

DC PARAMETERS


SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vref	Reverse Breakdown Voltage	Ir = 10uA			1.223	1.247	V	1
	Vortage	Ir = 20uA			1.205	1.26	V	2, 3
		Ir = 1mA			1.223	1.247	V	1
				1.205	1.26	V	2, 3	
		Ir = 20mA			1.223	1.247	V	1
					1.205	1.26	V	2, 3
Delta Vref/Delta	Delta Reverse Breakdown Vref/Delta Voltage Change Ir with Current	$10uA \leq Ir \leq 1mA$			-1.0	1.0	mV	1
		$20uA \leq Ir \leq 1mA$			-1.5	1.5	mV	2, 3
		$lmA \leq Ir \leq 20mA$			-10.0	10.0	mV	1
				-20.0	20.0	mV	2, 3	
Vf	Forward Bias Voltage	If = 2mA			-1.0	-0.4	V	1
Тс	Temperature Coefficient		1			50	ppm/ C	2, 3


Note 1: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating Tmax and Tmin, divided by Tmax - Tmin. The measured temperatures are -55 C, -40 C, 0 C, 25 C, 70 C, 85 C and 125 C.

Graphics and Diagrams

GRAPHICS#	DESCRIPTION	
05886HRB2	METAL CAN (H), TO-39, 3LD, .200 DIA P.C. (B/I CKT)	
H02ARE	METAL CAN, TO-46,2LD, .100 DIA P.C. (P/P DWG)	
P000363A	METAL CAN (H-1.2), TO-46, 2 LEAD (PINOUT)	

See attached graphics following this page.

LM185H-1.2 2 - LEAD TO-46 CONNECTION DIAGRAM BOTTOM VIEW P000363A

National Semiconductor⁻ MIL/AEROSPACE OPERATIONS 2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050