

MICROCIRCUIT DATA SHEET

Original Creation Date: 08/15/95 Last Update Date: 12/12/02

Last Major Revision Date: 11/20/02

1.2V MICROPOWER VOLTAGE REFERENCE DIODE

General Description

MNLM185-1.2-X REV 2A3

The LM185-1.2 is a micropower 2-terminal band-gap voltage regulator diode. Operating over a 10 uA to 20 mA current range, it features exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

Industry Part Number

NS Part Numbers

LM185

LM185E-1.2/883 LM185H-1.2-SMD LM185H-1.2/883 LM185WG-1.2-QV LM185WG-1.2/883

Prime Die

LM185

Controlling Document

SEE FEATURES SECTION

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp Description Temp (°C)

1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

Features

- Operating current of 10 uA to 20 uA
- 1.0 Ohms max dynamic impedance (Typical)
- Low temperature coefficient
- Low voltage reference-1.235V
- CONTROLLING DOCUMENT:

LM185E-1.2/883 5962-87594012A LM185H-1.2-SMD 5962-8759401XA LM185WG-1.2-QV 5962-8759401VYA LM185WG-1.2/883 5962-8759401YA

MICROCIRCUIT DATA SHEET

MNLM185-1.2-X REV 2A3

Original Creation Date: 08/15/95 Last Update Date: 12/12/02 Last Major Revision Date: 11/20/02

1.2V MICROPOWER VOLTAGE REFERENCE DIODE

General Description

The LM185-1.2 is a micropower 2-terminal band-gap voltage regulator diode. Operating over a 10 uA to 20 mA current range, it features exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

Industry Part Number

NS Part Numbers

LM185

LM185E-1.2/883 LM185H-1.2-SMD LM185H-1.2/883 LM185WG-1.2-QV LM185WG-1.2/883

Prime Die

LM185

Controlling Document

SEE FEATURES SECTION

Processing Subgrp Description Temp (°C)

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

Features

- Operating current of 10 uA to 20 uA
- 1.0 Ohms max dynamic impedance (Typical)
- Low temperature coefficient
- Low voltage reference-1.235V
- CONTROLLING DOCUMENT:

LM185E-1.2/883 5962-87594012A LM185H-1.2-SMD 5962-8759401XA LM185WG-1.2-QV 5962-8759401VYA LM185WG-1.2/883 5962-8759401YA

(Absolute Maximum Ratings)

Reverse Current		30mA
Forward Current		1.0mA
Operating Tempera	ture Range	-55 C < Ta < +125 C
Maximum Junction (Note 2)	Temperature	
Storage Temperatu	are	150 C
Lead Temperature		-55 C <u><</u> Ta <u><</u> +150 C
(Soldering, 1 Metal Can 20 Lead LCC CERAMIC SOIC	0 seconds)	300 C 300 C 260 C
Thermal Resistance ThetaJA Metal Can		300 C/W
20 Lead LCC	(500LF/Min Air Flow)	139 C/W 100 C/W 73 C/W
CERAMIC SOIC		194 C/W 128 C/W
ThetaJC Metal Can 20 Lead LCC CERAMIC SOIC		57 C/W 25 C/W 23 C/W
Package Weight (Typcial) Metal Can		mp p
Metal Can 20 Lead LCC CERAMIC SOIC		TBD TBD 210mg
ESD Tolerance (Note 3)		4000V
		40000

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA) /ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.

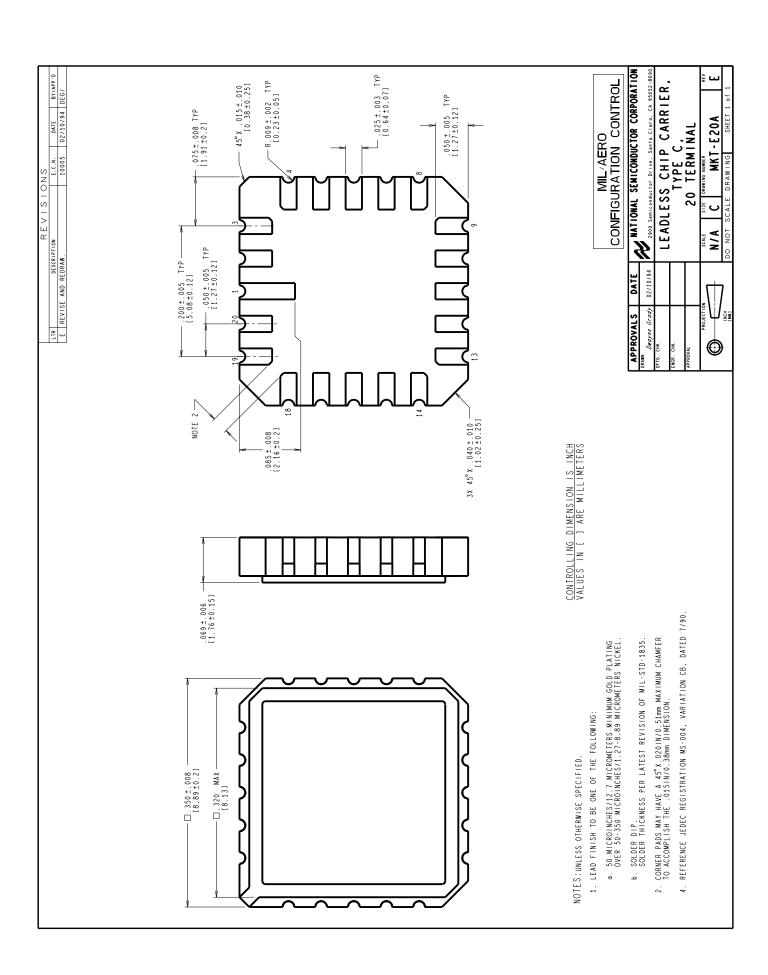
 Note 3: Human body model, 1.5K Ohms in series with 100pF.

Electrical Characteristics

DC PARAMETERS

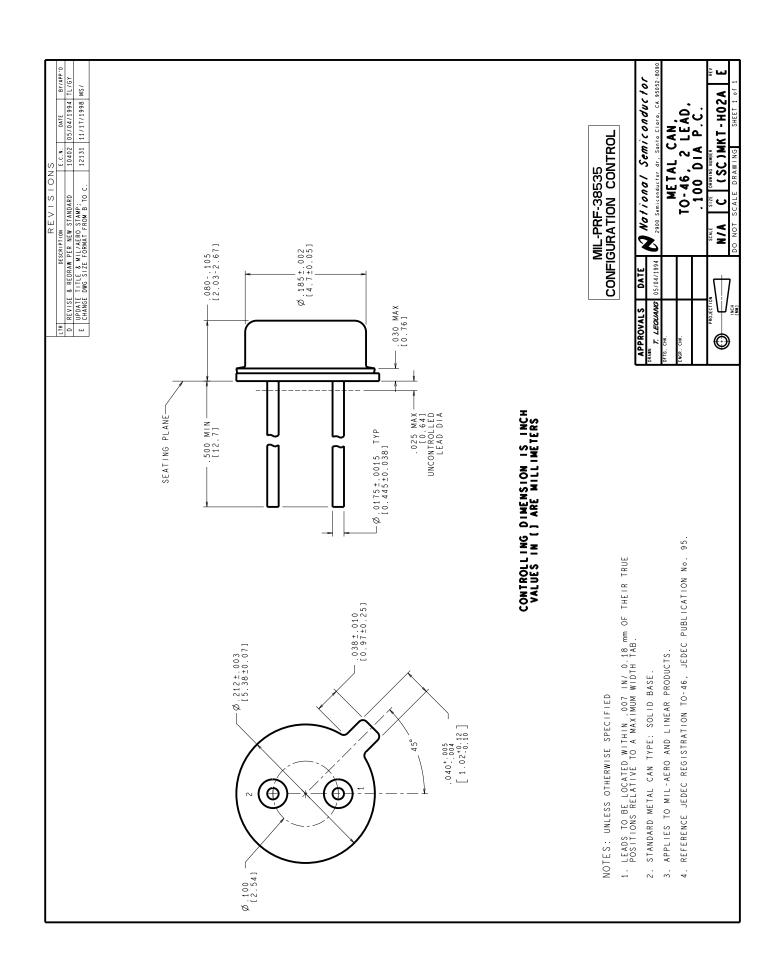
SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vref	Reverse Breakdown Voltage	Ir = 10uA			1.223	1.247	V	1
VOILage	Ir = 20uA			1.205	1.26	V	2, 3	
		Ir = 1mA			1.223	1.247	V	1
					1.205	1.26	V	2, 3
		Ir = 20mA			1.223	1.247	V	1
					1.205	1.26	V	2, 3
Delta Vref/Delta	Reverse Breakdown Voltage Change	10uA ≤ Ir ≤ 1mA			-1.0	1.0	mV	1
Ir		20uA ≤ Ir ≤ 1mA			-1.5	1.5	mV	2, 3
		1mA ≤ Ir ≤ 20mA			-10.0	10.0	mV	1
					-20.0	20.0	mV	2, 3
Vf	Forward Bias Voltage	If = 2mA			-1.0	-0.4	V	1

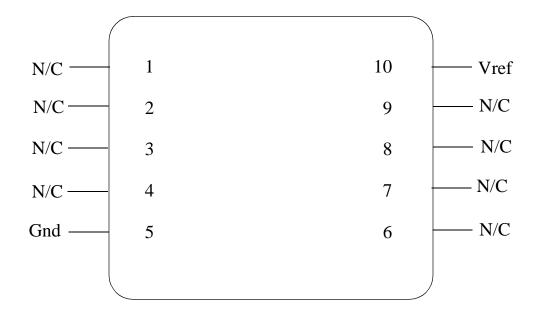
DC PARAMETERS: DRIFT VALUES

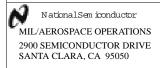

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: "Delta Calculations performed after Burn-In and Group B-5, unless otherwise specified on IPI"

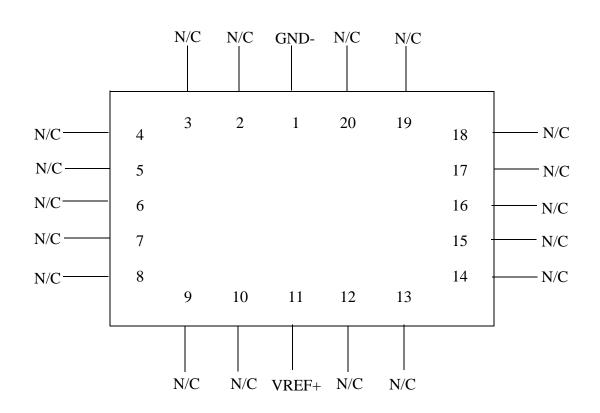
Vr	Reverse Breakdown Voltage	Ir = 10uA		-0.01	0.01	V	1
		Ir = 20mA		-0.01	0.01	V	1

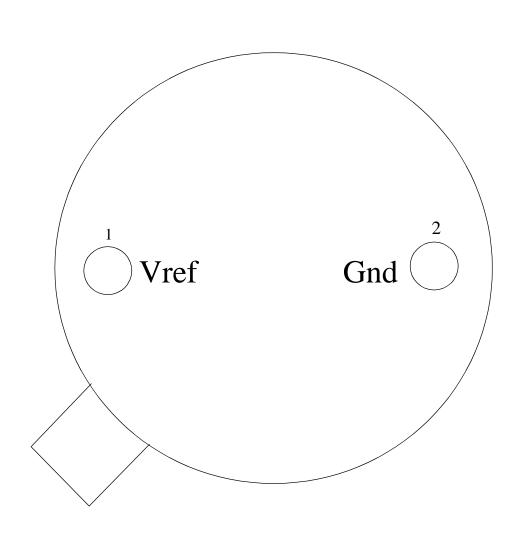
Graphics and Diagrams

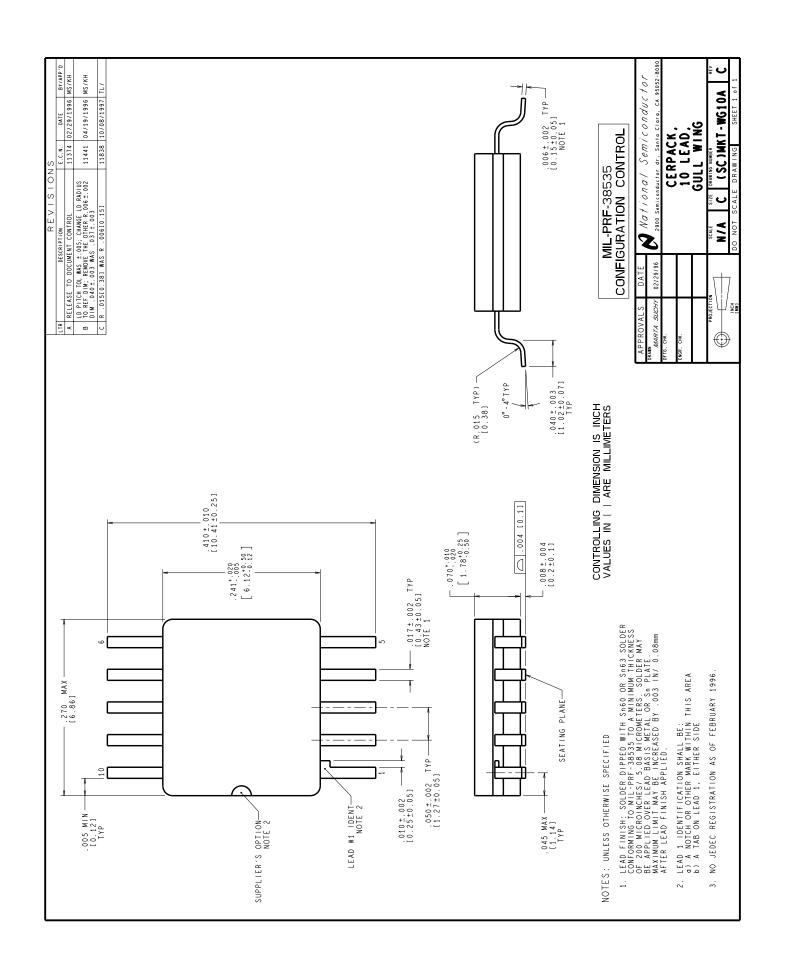

GRAPHICS#	DESCRIPTION	
05886HRB2	METAL CAN (H), TO-39, 3LD, .200 DIA P.C. (B/I CKT)	
06175HRB2	LCC (E), TYPE C, 20 TERMINAL (B/I CKT)	
06331HRA4	CERAMIC SOIC (WG), 10 LEAD (B/I CKT)	
E20ARE	LCC (E), TYPE C, 20 TERMINAL(P/P DWG)	
H02ARE	METAL CAN, TO-46,2LD, .100 DIA P.C. (P/P DWG)	
P000123C	CERAMIC SOIC (WG), 10 LEAD (PINOUT)	
P000329B	LCC (E), TYPE C, 20 TERMINAL (PINOUT)	
P000363B	METAL CAN (H-1.2), TO-46, 2 LEAD (PINOUT)	
WG10ARC	CERAMIC SOIC (WG), 10 LEAD (P/P DWG)	


See attached graphics following this page.


SE


B | B


LM185WG-1.2 10 - LEAD CERPACK SOIC CONNECTION DIAGRAM TOP VIEW P000123C


LM185E-1.2 20 - LEAD LCC CONNECTION DIAGRAM TOP VIEW P000329B

LM185H-1.2
2 - LEAD TO-46
CONNECTION DIAGRAM
BOTTOM VIEW
P000363B

