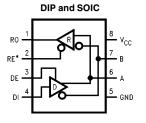
National Semiconductor

DS485 Low Power RS-485/RS-422 Multipoint Transceiver

General Description

The DS485 is a low-power transceiver for RS-485 and RS-422 communication. The device contains one driver and one receiver. The drivers slew rate allows for operation up to 2.5 Mbps (see Applications Information section).


The transceiver draws 200 μA of supply current when unloaded or fully loaded with the driver disabled and operates from a single $+\,5V$ supply.

The driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into TRI-STATE® (High Impedance state) under fault conditions. The driver guarantees a minimum of 1.5V differential output voltage with maximum loading across the common mode range (V_{OD3}).

The receiver has a failsafe feature that guarantees a logichigh output if the input is open circuit.

The DS485 is available in surface mount and DIP packages and is characterized for Industrial and Commercial temperature range operation.

Connection and Logic Diagram

TL/F/12880-1

Order Number	Temp. Range	Package/###
DS485N	$0^{\circ}C$ to $+70^{\circ}C$	DIP/N08E
DS485M	0°C to +70°C	SOP/M08A
DS485TN	-40°C to +85°C	DIP/N08E
DS485TM	-40°C to +85°C	SOP/M08A

Features

- Meets TIA/EIA RS-485 multipoint standard
- Guaranteed full load output voltage (V_{OD3})
- Low quiescent current
- -7V to +12V common-mode input voltage range
- TRI-STATE outputs on driver and receiver

AC performance:	
- Driver transition time	25 ns typ
 Driver propagation delay 	40 ns typ
— Driver skew	1 ns typ
 Receiver propagation delay 	200 ns typ
— Receiver skew	20 ns typ
Half-duplex flow through pinout	
Operates from a single 5V supply	
Allows up to 32 transceivers on the bus	
 Current-limiting and thermal shutdown for load protection 	driver over-

- Industrial temperature range operation
- Pin and functional compatible with MAX485 and LTC485

Truth Table

DRIVER SECTION						
RE*	DE	DI	Α	В		
Х	н	Н	н	L		
Х	н	L	L	н		
Х	L	Х	Z	Z		
RECEIVER SECTION						
RE*	DE	Α	-В	RO		
L	L	$\geq +$	0.2V	н		
L	L	$\leq -$	0.2V	L		
н	Х	X		z		
1		OPEN*		Н		

*Note: Non Terminated, Open Input only

X = indeterminate

Z = TRI-STATE

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1996 National Semiconductor Corporation TL/F/12880

RRD-B30M116/Printed in U. S. A.

http://www.national.com

DS485 Low Power RS-485/RS-422 Multipoint Transceiver

October 1996

200 µA typ

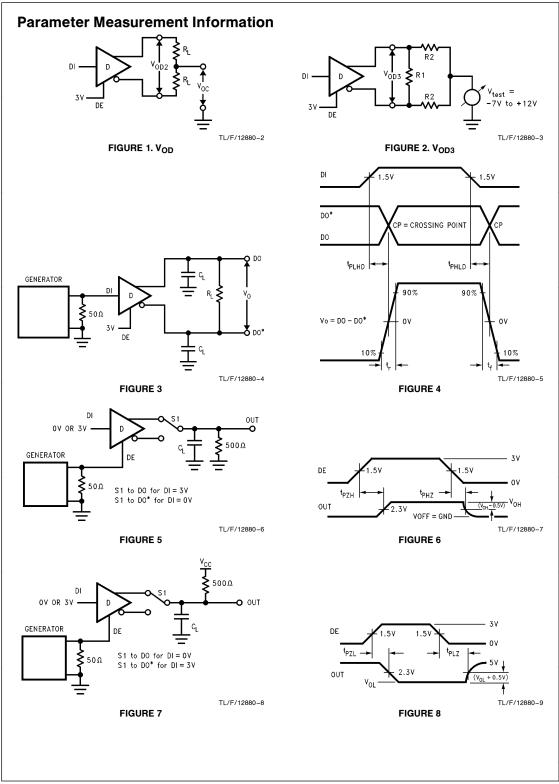
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

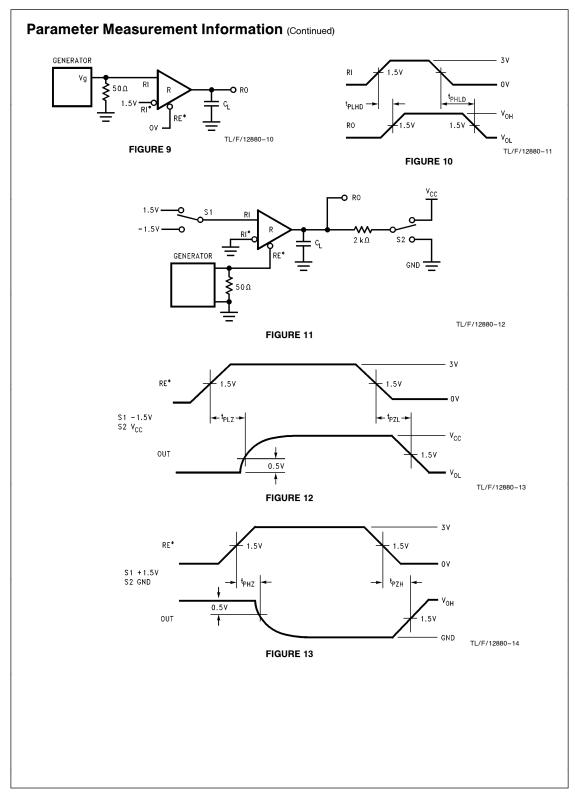
Supply Voltage (V _{CC})	+ 12V
Enable Input Voltage (RE*, DE)	- 0.5V to (V _{CC} + 0.5V)
Driver Input Voltage (DI)	- 0.5V to (V _{CC} + 0.5V)
Driver Output Voltage (A, B)	-14V to $+14V$
Receiver Input Voltage (A, B)	-14V to $+14V$
Receiver Output Voltage (RO)	-0.5V to (V _{CC} + 0.5V)
Maximum Package Power Dissipa	ation @ +25°C
M Package	1.19W
N Package	0.74W
Derate M Package 9.5 mW/°C ab	ove +25°C
Derate N Package 6.0 mW/°C ab	ove +25°C

Maximum Package Power Dissipation	⊉ +70°C
M Package	0.76W
N Package	0.47W
Storage Temperature Range	-65°C to +150°C
Lead Temperature Range	
(Soldering, 4 sec.)	+ 260°C
ESD (HBM)	\ge 2 kV

Recommended Operating Conditions


	Min	Тур	Max	Units
Supply Voltage (V _{CC})	+4.75	+5.0	+5.25	V
Operating Free Air				
Temperature (T _A)				
DS485	0	+ 25	+70	°C
DS485T	-40	+25	+85	°C
Bus Common Mode Voltage	-7		+12	V

Electrical Characteristics


Over Supply Voltage and Operating Temperature Ranges, unless otherwise specified (Notes 2, 3)

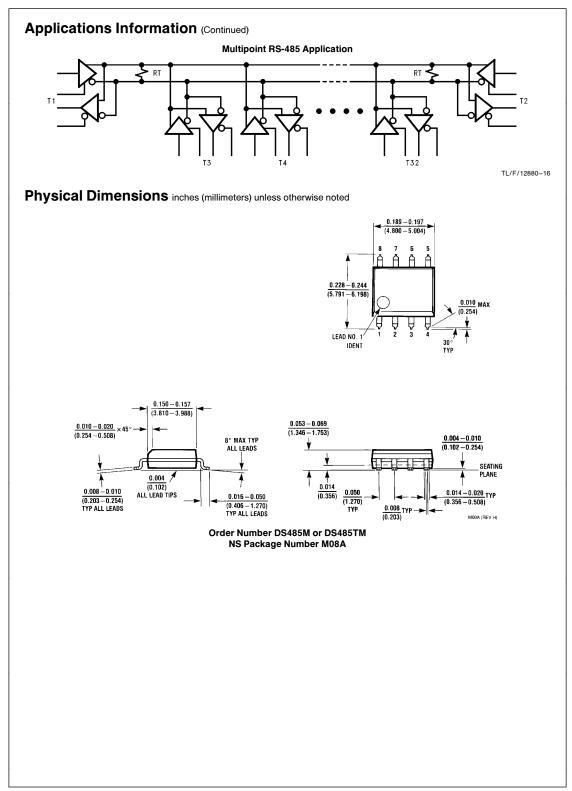
Symbol	Parameter	Conditions	Pin	Min	Тур	Мах	Units
V _{OD1}	Differential Driver Output Voltage	(No Load)	A, B			5	V
V _{OD2}	Differential Driver Output Voltage	$R_L=50\Omega$, (RS422), <i>Figure 1</i>]	2	2.8		V
	with Load	$R_{L}=27\Omega,$ (RS485), <i>Figure 1</i>		1.5	2.3	5	V
ΔV_{OD}	Change in Magnitude of Output Differential Voltage	$R_L = 27\Omega \text{ or } 50\Omega \text{ (Note 4)}$				0.2	V
V _{OD3}	Differential Driver Output Voltage— Full Load with Max V _{CM}	$ \begin{array}{l} R1 = 54\Omega, R2 = 375\Omega \\ V_{TEST} = -7V \text{ to } + 12V, \textit{Figure 2} \end{array} $		1.5	2.0	5	V
V _{OC}	Driver Common-Mode Output Voltage	$R_L = 27\Omega \text{ or } 50\Omega,$ <i>Figure 1</i>]			3	V
ΔV_{OC}	Change in Magnitude of Common-Mode Output Voltage	$R_L = 27\Omega \text{ or } 50\Omega, Figure 1 \text{ (Note 4)}$				0.2	$ \mathbf{V} $
VIH	Input High Voltage		DI, DE,	2.0			V
V _{IL}	Input Low Voltage RE*				0.8	V	
I _{IN1}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$	1			±2	μA
I _{IN2}	Input Current (Note 5)	$V_{IN} = +12V$	A, B			1.0	mA
	$DE=0V,V_{CC}=0V\ or\ 5.25V$	$V_{IN} = -7V$]			-0.8	mA
V _{TH}	Receiver Differential Threshold Voltage	$-7V \leq V_{CM} \leq +12V$		-0.2		0.2	V
ΔV_{TH}	Receiver Input Hysteresis	$V_{CM} = 0V$			70		mV
V _{OH}	Receiver Output High Voltage	$I_{O} = -4 \text{ mA}, V_{ID} = 0.2 V$	RO	3.5			V
V _{OL}	Receiver Output Low Voltage	$I_{O} = 4 \text{ mA}, V_{ID} = -0.2 V$				0.4	V
I _{OZR}	TRI-STATE Output Current at Receiver	$0.4V \le V_O \le 2.4V$				±1	μA
R _{IN}	Receiver Input Resistance	$-7V \leq V_{IN} \leq +12V$	A, B	12			kΩ
ICC	No-Load Supply Current (Note 6)	$DE=V_{CC},RE^*=0VorV_{CC}$	V _{CC}		200	900	μA
		$DE=0V,RE^*=0V$ or V_{CC}			200	500	μΑ
I _{OSD1}	Driver Short Circuit Current, $V_0 = HIGH$	$-7V \le V_0 \le +12V$	A, B	35		250	mA
I _{OSD2}	Driver Short Circuit Current, $V_0 = LOW$	$-7V \leq V_O \leq +12V$		35		250	mA
IOSR	Receiver Short Circuit Current	$0V \le V_O \le V_{CC}$	RO	7		85	mA

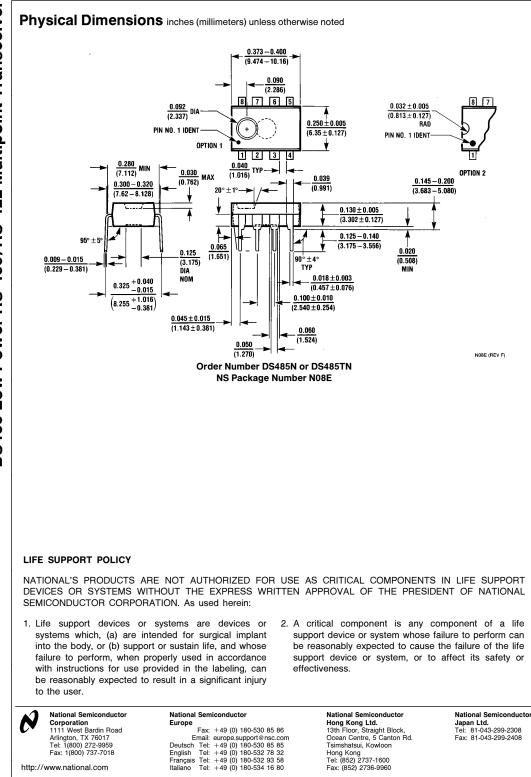
Priver Differential Propagation Delay—Low to High Priver Differential Propagation Delay—High to Low Differential Skew $ t_{PHLD} - t_{PLHD} $ Priver Rise Time Driver Fall Time Priver Enable to Output High Driver Enable to Output Low Driver Disable from Output Low	$R_L = 54\Omega, C_L = 100 \text{ pF}$ $C_L = 100 \text{ pF}$ $C_L = 100 \text{ pF}$ $C_L = 100 \text{ pF}$	10 10 3 3	40 39 1 25 25	65 65	ns
Priver Fall Time Priver Fall Time Priver Enable to Output High Priver Disable from Output Low	$C_L = 100 \text{pF}$	3	1 25	65	
Priver Rise Time Priver Fall Time Priver Enable to Output High Priver Enable to Output Low Priver Disable from Output Low	$C_L = 100 \text{pF}$		25		ns
Driver Fall Time Driver Enable to Output High Driver Enable to Output Low Driver Disable from Output Low	$C_L = 100 \text{pF}$			10	ns
Priver Enable to Output High Priver Enable to Output Low Priver Disable from Output Low	$C_L = 100 \text{pF}$	3	25	40	ns
Priver Enable to Output Low	$C_L = 100 \text{pF}$			40	ns
Priver Disable from Output Low				170	ns
•	$C_{\rm r} = 15 \rm pE$			170	ns
	$C_L = 15 pF$			170	ns
Priver Disable from Output High	C _L = 15 pF			170	ns
Receiver Differential Propagation Delay—Low to High	C _L = 15 pF (RO)	70	190	320	ns
Receiver Differential Propagation Delay—High to Low		70	210	320	ns
ifferential Skew $ t_{PHLD} - t_{PLHD} $			20	50	ns
Receiver Enable to Output High	C _L = 15 pF			110	ns
Receiver Enable to Output Low				110	ns
Receiver Disable from Output Low				110	ns
Receiver Disable from Output High				110	ns
Iaximum Data Rate	(Note 9)	2.5			Mbp
MZ, t _r and t _f ≤ 6 ns, Z _O = 50Ω. udes jig and probe capacitance. he guaranteed data rate for 50 ft of twisted pair cable. f _{max} may be c (1/f _{max}). Using a 10% ratio yields f _{max} = (0.1)/40 ns = 2.5 Mb/s	conservatively determined from the ra	tio of drive	r transition	time (t _r) to	the data

4

Pin	Pin Descriptions						
Pin #	I/O	Name	Function				
1	0	RO	Receiver Output: If $A > B$ by 200 mV, RO will be high; If $A < B$ by 200 mV, RO will be low. RO will be high also if the inputs (A and B) are open (non-terminated).				
2	Т	RE*	Receiver Output Enable: RO is enabled when RE* is low; RO is in TRI-STATE when RE* is high.				
3	I	DE	Driver Output Enable: The driver outputs (A and B) are enabled when DE is high; they are in TRI- STATE when DE is low. Pins A and B also function as the receiver input pins (see below).				
4	I	DI	Driver Input: A low on DI forces A low and B high while a high on DI forces A high and B low when the driver is enabled.				
5	NA	GND	Ground				
6	1/0	A	Non-inverting Driver Output and Receiver Input pin. Driver output levels conform to RS-485 signaling levels.				
7	1/0	В	Inverting Driver Output and Receiver Input pin. Driver output levels conform to RS-485 signaling levels.				
8	NA	V _{CC}	Power Supply: 4.75V \leq V _{CC} \leq 5.25V				

Related National Low Power RS-485 Transceivers


Part Number	Temperature Range	Number of XCVRs on Bus	Comments
DS36C278	0°C to +70°C	128	Ultra Low Power Transceiver
DS36C278T	-40°C to +85°C	64	Ultra Low Power Transceiver
DS36C279	0°C to +70°C	128	Auto-Sleep Mode
DS36C279T	-40°C to +85°C	64	Auto-Sleep Mode
DS36C280	0°C to +70°C	128	Adjustable Slew Rate Control
DS36C280T	-40°C to +85°C	64	Adjustable Slew Rate Control


Applications Information

The DS485 is a low power transceiver designed for use in RS-485 multipoint applications. The DS485 can transmit data up to 2.5 Mbps based on a ratio of driver transition time to the unit interval (bit time) of 10%. This maximum data rate may be further limited by the interconnecting media. The DS485 provides a standard unit load to the RS-485 bus across the common mode range of -7V to +12V. This allows up to 32 transceivers (standard unit load) to be connected to the bus. More transceivers may be connected to the bus if they support a reduced unit load (see DS36C278). The DS485 also guarantees the driver's output differential voltage into a worst case load that models standard termination loads and 32 unit loads referenced to the maximum common mode voltage extremes. With a minimum of 1.5V swing into this load, a 1.3V differential noise margin is supported along with the standard common mode rejection range of the receivers.

Due to the multipoint nature of the bus, contention between drivers may occur. This will not cause damage to the drivers since they feature short-circuit protection and also thermal shutdown protection. Thermal shutdown senses die temperature and puts the driver outputs into TRI-STATE if a fault condition occurs that causes excessive power dissipation which can elevate the junction temperature to $+150^{\circ}$ C.

A typical multipoint application is shown in the following figure. Note that termination is typically required but is only located at the two ends of the cable (not on every node). Commonly pull up and pull down resistors may be required at one end of the bus to provide a failsafe bias. These resistors provide a bias to the line when all drivers are in TRI-STATE. See National Application Note 847 for a complete discussion of failsafe biasing of differention buses.

DS485 Low Power RS-485/RS-422 Multipoint Transceiver

http://www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications