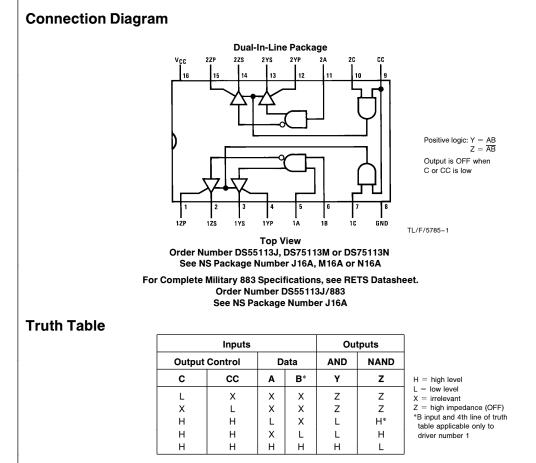


DS55113/DS75113 Dual TRI-STATE® Differential Line Driver


General Description

The DS55113/DS75113 dual differential line drivers with TRI-STATE outputs are designed to provide all the features of the DS55114/DS75114 line drivers with the added feature of driver output controls. There are individual controls for each output pair, as well as a common control for both output pairs. When an output control is low, the associated output is in a high-impedance state and the output can neither drive nor load the bus. This permits many devices to be connected together on the same transmission line for party-line applications.

The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pull-up terminals, YP and ZP, available on adjacent package pins.

Features

- Each circuit offers a choice of open-collector or active pull-up (totem-pole) outputs
- Single 5V supply
- Differential line operation
- Dual channels
- TTL/LS compatibility
- High-impedance output state for party-line applications
- Short-circuit protection
- High current outputs
- Single-ended or differential AND/NAND outputs
- Common and individual output controls
- Clamp diodes at inputs
 Easily adaptable to DS55114/DS75114 applications

TRI-STATE® is a registered trademark of National Semiconductor Corp.

© 1996 National Semiconductor Corporation TL/F/5785

RRD-B30M36/Printed in U. S. A.

http://www.national.com

DS55113/DS75113 Dual TRI-STATE Differential Line Driver

February 1996

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC}) (Note 1)	7V
Input Voltage	5.5V
OFF-State Voltage Applied to Open-Collector Outputs	12V
Maximum Power Dissipation* at 25°C Cavity Package Molded DIP Package SO Package	1433 mW 1362 mW 1002 mW
Operating Free-Air Temperature Range DS55113 DS75113	−55°C to +125°C 0°C to +70°C
*Derate cavity package 9.6 mW/°C above 25°C; age 10.9 mW/°C above 25°C; derate SO package (Note 2).	

Storage Temperature Range	-	-65°C to	+ 150°C
Lead Temperature (1/16" from ca 60 seconds): J Package	ase for		300 °C
Lead Temperature (1/16" from ca 4 seconds): N Package	ase for		260°C
Operating Condition	S		
	Min	Max	Units
Supply Voltage (V _{CC})			
DS55113	4.5	5.5	V
DS75113	4.75	5.25	V
High Level Output Current (I _{OH})		-40	mA
Low Level Output Current (I _{OL})		40	mA

Operating Free-Air Temperature (T_A) DS55113 -55

125

70

0

°C

°C

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted)

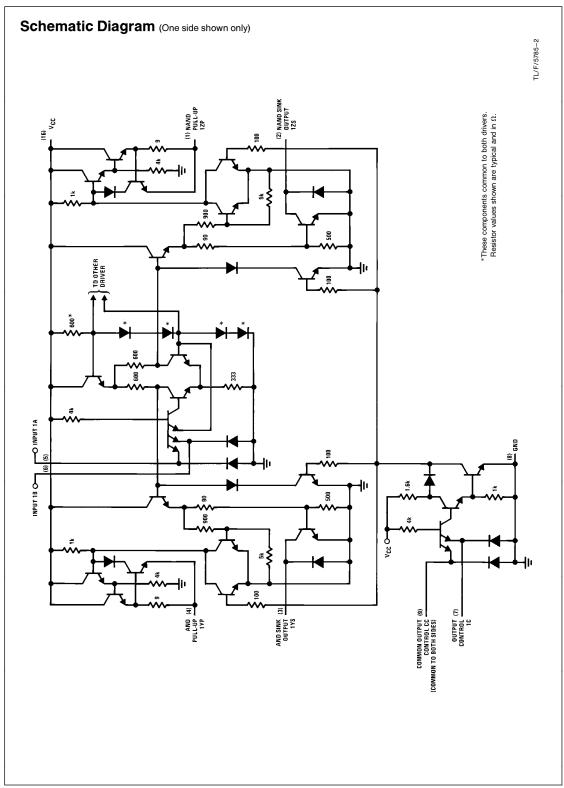
DS75113

						DS5511	3	DS75113				
Symbol	Paramete	er	Conditions (Note 3)			Min	Typ (Note 4)	Max	Min	Typ (Note 4)	Max	Units
V _{IH}	High Level Input Voltage				2			2			v	
V _{IL}	Low Level Input Voltage		-					0.8			0.8	v
V _{IK}	Input Clamp Vol	tage	$V_{CC} = Min, I_I = -12 \text{ mA}$				-0.9	-1.5		-0.9	-1.5	V
V _{OH}	High Level Output Voltage		$\label{eq:VCC} \begin{array}{l} V_{CC} = Min, V_{IH} = 2V, \\ V_{IL} = 0.8V \end{array} \qquad \qquad \begin{array}{l} I_{OH} = -10 \text{ mA} \\ \hline I_{OH} = -40 \text{ mA} \end{array}$			3.4 3.0		2.4 2	3.4 3.0		v	
V _{OL}	Low Level Output Voltage		$V_{CC} = Min, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = 40 \text{ mA}$			0.23	0.4		0.23	0.4	v	
V _{OK}	Output Clamp V	oltage	V _{CC} = Max, I _O	$V_{\rm CC}={ m Max}, { m I}_{ m O}=-40~{ m mA}$			-1.1	-1.5		-1.1	-1.5	V
I _{O(off)}	O(off) Off-State Open-Collector Output Current		$V_{CC} = Max$ $V_{OH} = 12V$	V _{OH} = 12V	T _A = 25°C		1	10				
				T _A = 125°C			200				μΑ	
		V _{OH}	V _{OH} = 5.25V	$T_A = 25^{\circ}C$					1	10		
				$T_A = 70^{\circ}C$						20		
I _{OZ}			V _{CC} = Max, Output Controls at 0.8V	$T_A = 25^{\circ}C, V_C$	$_{\rm O}=0$ to V _{CC}			±10			±10	
Impedance-State) Output Current	e)	T _A = Max		$V_{O} = 0V$			- 150			-20		
					$V_{O} = 0.4V$			±80			± 20	μA
					$V_{O} = 2.4V$			± 80			± 20	
					$V_{O} = V_{CC}$			80			20	
lj	Input Current at Maximum Input Voltage		$V_{CC} = Max, V_{I} =$	$V_{CC} = Max$, $V_I = 5.5V$				1 2			1 2	mA
IIH	High Level Input Current	A, B, C CC	$V_{CC} = Max, V_{I} =$	$V_{CC} = Max, V_I = 2.4V$				40 80			40 80	μΑ
l _{IL}	Low Level		V _{CC} = Max, V _I :	= 0.4V				-1.6			-1.6	
· • •	Input Current	CC	v_{UU} iviax, $v_{\parallel} = 0.4v$				-3.2			-3.2	mA	

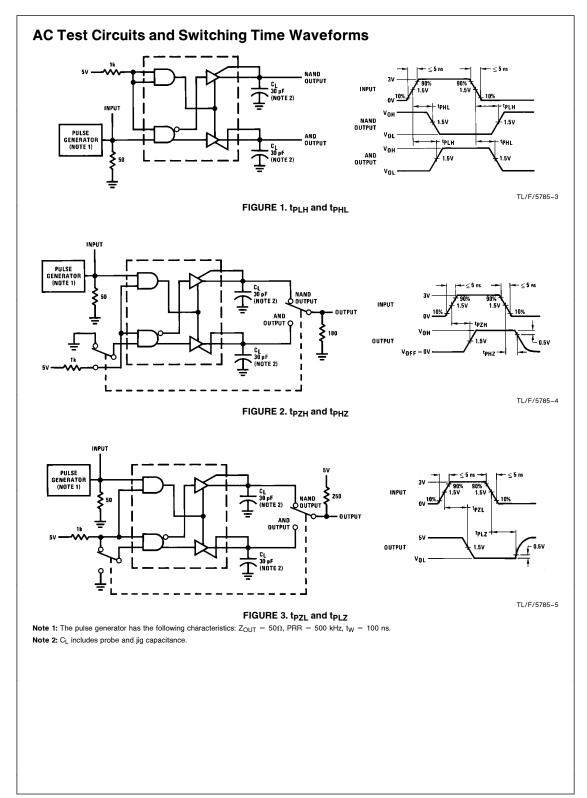
Symbol					DS55113	3	DS75113			
	Parameter	Conditions (Not	Conditions (Note 3)			Max	Min	Typ (Note 4)	Max	Units
I _{OS}	Short-Circuit Output Current (Note 5)	$V_{CC} = Max, V_O = 0V$	$V_{CC} = Max, V_O = 0V$			-120	-40	-90	- 120	mA
ICC			V _{CC} = Max		47	65		47	65	mA
(Both Drivers)	$T_A = 25^{\circ}C$	$T_A = 25^{\circ}C$ $V_{CC} = 7V$		65	85		65	85		

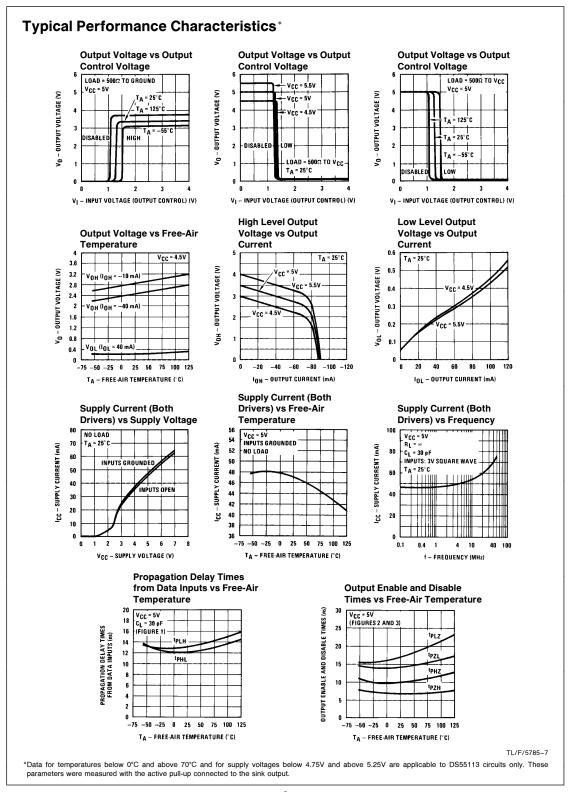
Note 1: All voltage values are with respect to network ground terminal.

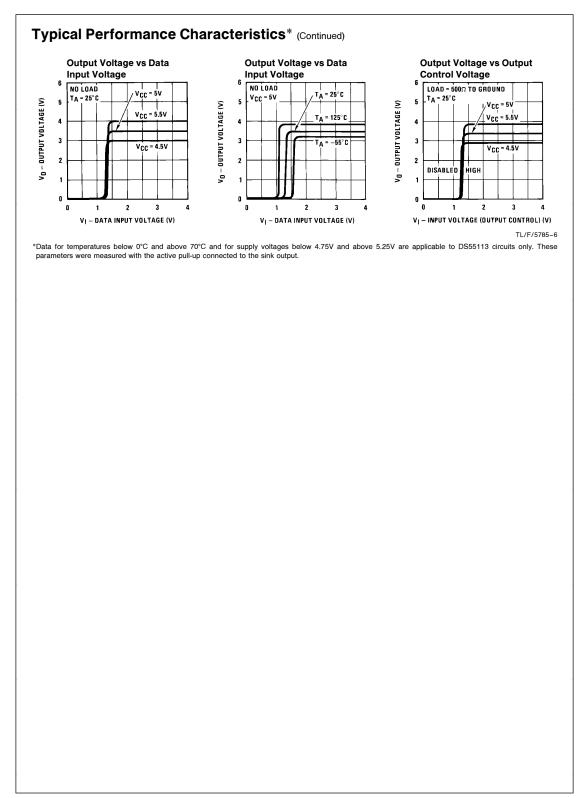
Note 2: For operation above 25°C free-air temperature, refer to Dissipation Derating Curves in the Thermal information section.

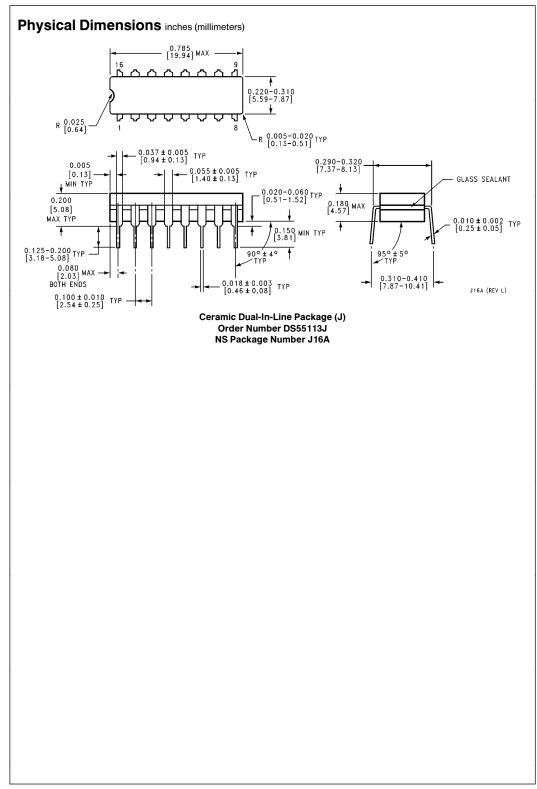

Note 3: All parameters with the exception of OFF-state open-collector output current are measured with the active pull-up connected to the sink output.

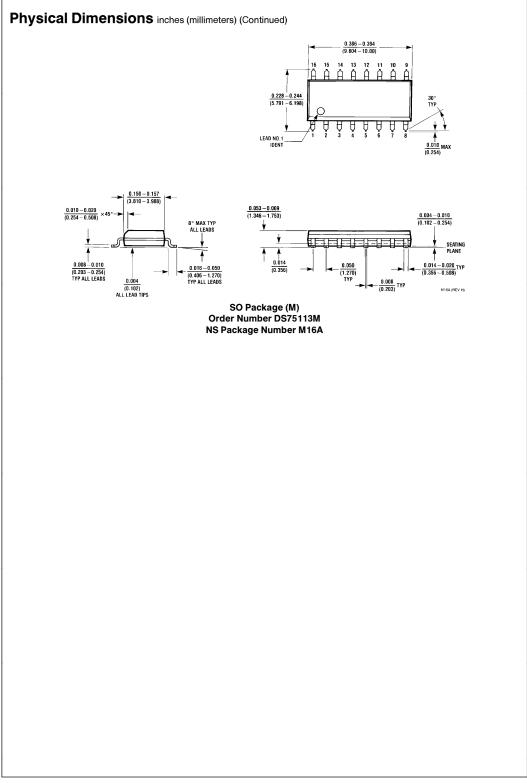
Note 4: All typical values are at T_{A} = 25°C and V_{CC} = 5V, with the exception of I_{CC} at 7V.

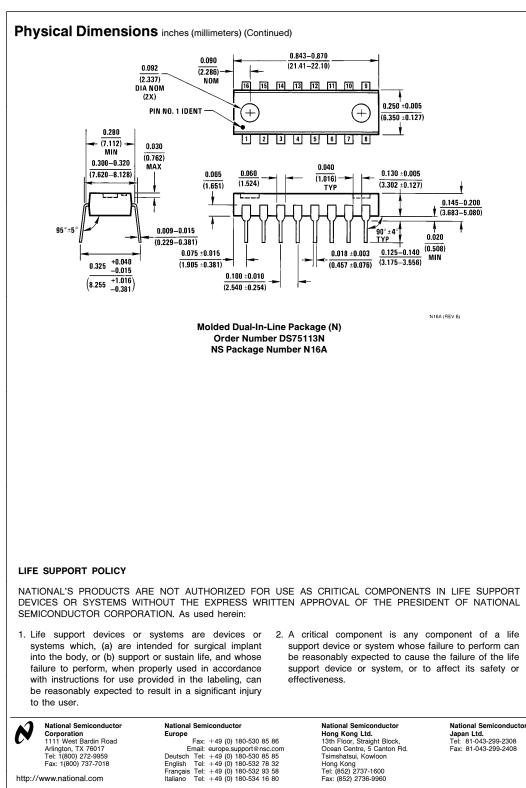

Note 5: Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


Switching Characteristics $v_{CC}=$ 5V, $C_L=$ 30 pF, $T_A=$ 25°C


Symbol	Parameter	Conditions		DS5511	3		Unit			
Gymbol	i arameter	Conditions	Min	Min Typ M		Min	Тур	Max	Cint	
t _{PLH}	Propagation Delay Time, Low-to High-Level Output	(Figure 1)		13	20		13	30	ns	
t _{PHL}	Propagation Delay Time, High-to Low-Level Output			12	20		12	30	ns	
t _{PZH}	Output Enable Time to High Level	R _L = 180Ω, <i>(Figure 2)</i>		7	15		7	20	ns	
t _{PZL}	Output Enable Time to Low Level	$R_L = 250\Omega$, (Figure 3)		14	30		14	40	ns	
t _{PHZ}	Output Disable Time from High Level	$R_L = 180\Omega$, (Figure 2)		10	20		10	30	ns	
t _{PLZ}	Output Disable Time from Low Level	$R_L = 250\Omega$, (Figure 3)		17	35		17	35	ns	




4



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.