≤75 µA

20 mA

< 1Ω

-40°C to 85°C

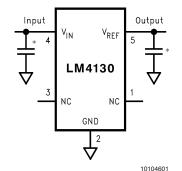
2.500V and 4.096V

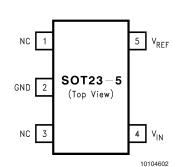
LM4130 Precision Micropower Low Dropout Voltage Reference Low Temperature Coefficient 10 ppm/°C

General Description

The LM4130 family of precision voltage references performs comparable to the best laser-trimmed bipolar references, but in cost effective CMOS technology. Key to this break through is the use of EEPROM registers for correction of curvature, tempco, and accuracy on a CMOS bandgap architecture that allows package level programming to overcome assembly shift. The shifts in voltage accuracy and tempco during assembly of die into plastic packages limit the accuracy of references trimmed with laser techniques.

Unlike other LDO references, the LM4130 requires no output capacitor. Neither is a buffer amplifier required, even with loads up to 20mA. These advantages and the SOT23 packaging are important for cost-critical and space-critical applications.


Series references provide lower power consumption than shunt references, since they don't have to idle the maximum possible load current under no load conditions. This advantage, the low guiescent current (75µA), and the low dropout voltage(275mV) make the LM4130 ideal for battery-powered solutions.


The LM4130 is available in five grades (A, B, C, D and E) for greater flexibility. The best grade devices (A) have an initial accuracy of 0.05% with guaranteed temperature coefficient of 10ppm/°C or less, while the lowest grade parts (E) have an initial accuracy of 0.5% and a tempco of 30ppm/°C.

Features

input noise reduction. (See Application Information)

- Small SOT23-5 package
- High output voltage accuracy
- 0.05%
- **Connection Diagram and Pin Configuration**

Refer to the Ordering Information Table in this Data Sheet for Specific Part Number

SOT23-5 Surface Mount Package

- Stable with capacitive loads to 2.2µF
- Low dropout voltage
- ≤275 mV @ 10 mA Supply Current
- Full accuracy
- Extended operation to 125°C
- Excellent load and line regulation
- Output current
- Output impedance
- Voltage options:

Applications Summary

- Portable, battery powered equipment
- Instrumentation and process control
- Automotive & Industrial
- Test equipment
- Data acquisition systems
- Precision regulators
- Battery chargers
- Base stations
- Communications
- Medical equipment
- Servo systems

*Optional, Recommended for improved transient response and

Ordering Information

Industrial Temperature Range (-40°C to + 85°C)

nitial Output Voltage Accuracy at 25°C And Temperature Coefficient	LM4130 Supplied as 1000 Units, Tape and	LM4130 Supplied as 3000 Units, Tape and	Part Marking	
And Temperature Coefficient	Reel	Reel		
0.05%, 10 ppm/°C max (A grade)	LM4130AIM5-2.5	LM4130AIM5X-2.5	R03A	
	LM4130AIM5-4.1	LM4130AIM5X-4.1	R04A	
0.2%, 10 ppm/°C max (B grade)	LM4130BIM5-2.5	LM4130BIM5X-2.5	R03B	
	LM4130BIM5-4.1	LM4130BIM5X-4.1	R04B	
0.1%, 20 ppm/°C max (C grade)	LM4130CIM5-2.5	LM4130CIM5X-2.5	R03C	
	LM4130CIM5-4.1	LM4130CIM5X-4.1	R04C	
0.4%, 20 ppm/°C max (D grade)	LM4130DIM5-2.5	LM4130DIM5X-2.5	R03D	
0,0, _0 pp, 0 max (D grado)	LM4130DIM5-4.1	LM4130DIM5X-4.1	R04D	
0.5%, 30 ppm/°C max (E grade)	LM4130EIM5-2.5	LM4130EIM5X-2.5	R03E	
	LM4130EIM5-4.1	LM4130EIM5X-4.1	R04E	

SOT23-5 Package Marking Information

Only four fields of marking are possible on the SOT23-5's small surface. This table gives the meaning of the four fields.

Field Information				
First Field:				
R = Reference				
Second and Third Field:				
03 = 2.50V Voltage Option				
04 = 4.096V Voltage Option				
Fourth Field:				
A-E = Initial Reference Voltage Tolerance and Temperature Coefficient				
$A = \pm 0.05\%$, 10ppm/°C				
$B = \pm 0.2\%, 10 ppm/°C$				
$C = \pm 0.1\%$, 20ppm/°C				
$D = \pm 0.4\%, 20 \text{ppm/°C}$				
$E = \pm 0.5\%$, 30ppm/°C				

Absolute Maximum Rati	ngs (Note 1)	Machine Model	200V
If Military/Aerospace specified devices are required,		Lead Temperature:	
please contact the National Semicondu		Soldering, (10 sec.)	+260°C
Distributors for availability and specifications.		Vapor Phase (60 sec.)	+215°C
Maximum Voltage on any Input	–0.3V to 6V	Infrared (15 sec.)	+220°C
Output Short-Circuit Duration	Indefinite		
Power Dissipation ($T_A = 25^{\circ}C$)	350 mW	Operating Range (Note 1)	
(Note 2)			
ESD Susceptibility (Note 3)		Storage Temperature Range	–65°C to +150°C
Human Body Model	2 kV	Operating Temperature Range	–40°C to +85°C

LM4130-2.500 Electrical Characteristics

Unless otherwise specified $V_{CC} = 5V$, $I_{LOAD} = 0$ $T_A = 25^{\circ}C$. Limits with standard typeface are for $T_A = 25^{\circ}C$, and limits in **bold-face type** apply over the operating temperature range.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V _{REF}	Output Voltage Initial					%
Accuracy LM4130A-2.500 LM4130B-2.500 LM4130C-2.500 LM4130D-2.500	Accuracy					
	LM4130A-2.500				±0.05	
	LM4130B-2.500				±0.2	
	LM4130C-2.500				±0.1	
	LM4130D-2.500				±0.4	
	LM4130E-2.500				±0.5	
TCV _{REF} /°C	Temperature Coefficient					ppm/°C
LM4130	LM4130A, B	0°C ≤ T _A ≤ +85°C			10	
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			20	
	LM4130C, D				20	
	LM4130E				30	
$\Delta V_{\text{REF}} / \Delta V_{\text{IN}}$ Line Regulation	Line Regulation	Ι _{LOAD} = 100μΑ				ppm/V
		V_{REF} + 200 mV $\leq V_{IN} \leq 5.5V$		30	100	
		V_{REF} + 400 mV $\leq V_{IN} \leq 5.5V$			150	
$\Delta V_{\text{REF}} / \Delta I_{\text{LOAD}}$ Load Regulation	Load Regulation	$0 \text{ mA} \le I_{LOAD} \le 20 \text{ mA}$		25	60	ppm/mA
					80	
	Long-Term Stability (Note	1000 Hrs		50		
	7)					
	Thermal Hysteresis	$-40^{\circ}C \le T_A \le +125^{\circ}C$		50		ppm
	(Note 8)					
V _{IN} - V _{REF}	Dropout Voltage	$I_{LOAD} = 10 \text{ mA}$			275	mV
	(Note 9)				400	
V _N	Output Noise Voltage	0.1 Hz to 10 Hz		150		μV_{PP}
I _S Supply Current	Supply Current			50	75	μA
					90	
I _{SC} Short Circuit Curre	Short Circuit Current		30		60	mA
					65	mA

LM4130

LM4130-4.096 Electrical Characteristics

Unless otherwise specified $V_{CC} = 5.0V$, $I_{LOAD} = 0$ $T_A = 25^{\circ}C$. Limits with standard typeface are for $T_A = 25^{\circ}C$, and limits in **boldface type** apply over the operating temperature range.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V _{REF}	Output Voltage Initial					%
	Accuracy					
	LM4130-4.096A				±0.05	
	LM4130-4.096B				±0.2	
	LM4130-4.096C				±0.1	
	LM4130-4.096D				±0.4	
	LM4130-4.096E				±0.5	
TCV _{REF} /°C	Temperature Coefficient					ppm/°C
(Note 6)	LM4130A, B	$0^{\circ}C \leq T_{A} \leq +85^{\circ}C$			10	
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$			20	
	LM4130C, D				20	
	LM4130E				30	
$\Delta V_{\text{REF}} / \Delta V_{\text{IN}}$ Line Regu	Line Regulation	$I_{LOAD} = 100 \mu A$				
		V_{BEF} + 500 mV $\leq V_{IN} \leq 5.5V$		75	250	ppm/V
					400	
ΔV _{REF} /ΔI _{LOAD} Load Regulation	Load Regulation	$0 \text{ mA} \leq I_{LOAD} \leq 20 \text{ mA}$		16	60	ppm/mA
					80	
ΔV_{REF} -	Long-Term Stability (Note	1000 Hrs		50		
	7)					
	Thermal Hysteresis	$-40^{\circ}C \le T_A \le +125^{\circ}C$		50		ppm
	(Note 8)					
V _{IN} - V _{REF} Dropout Voltage (Note 9)	Dropout Voltage	$I_{LOAD} = 10 \text{ mA}$			275	mV
	(Note 9)				500	
V _N	Output Noise Voltage	0.1 Hz to 10 Hz		245		μV_{PP}
I _S Supply Cu	Supply Current			50	75	μA
					90	
I _{sc}	Short Circuit Current		30		60	mA
					65	mA

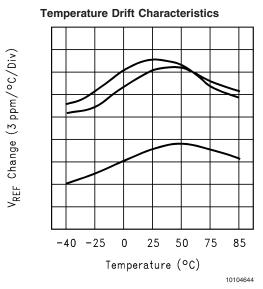
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: Without PCB copper enhancements. The maximum power dissipation must be de-rated at elevated temperatures and is limited by T_{JMAX} (maximum junction temperature), θ_{J-A} (junction to ambient thermal resistance) and T_A (ambient temperature). The maximum power dissipation at any temperature is: PDiss_{MAX} = $(T_{JMAX} - T_A)/\theta_{J-A}$ up to the value listed in the Absolute Maximum Ratings. θ_{J-A} for SOT23-5 package is 220°C/W, $T_{JMAX} = 125$ °C.

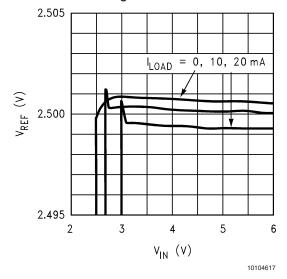
Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

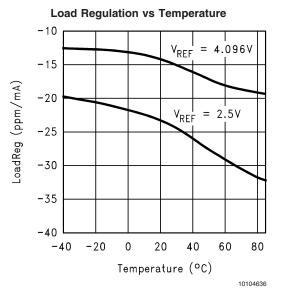
Note 4: Typical numbers are at 25°C and represent the most likely parametric norm.

Note 5: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's Average Outgoing Quality Level (AOQL).

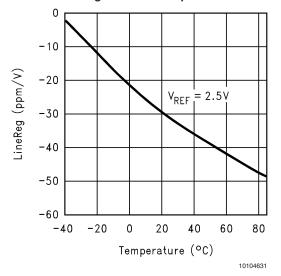

Note 6: Temperature coefficient is measured by the "Box" method; i.e., the maximum ΔV_{REF} is divided by the maximum ΔT .

Note 7: Long term stability is V_{REF} @25°C measured during 1000 hrs.


Note 8: Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from -40°C to 125°C.


Note 9: Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5V input.

LM4130 Typical Performance Characteristics $T_A = 25^{\circ}C$, No Load, $V_{IN} = 5.0V$, unless otherwise noted.

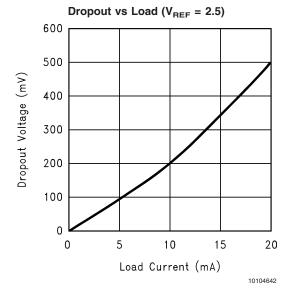


Line Regulation vs Load

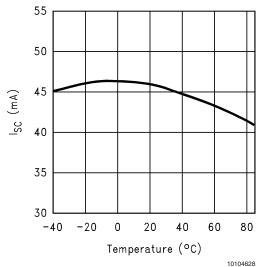
Line Regulation vs Temperature

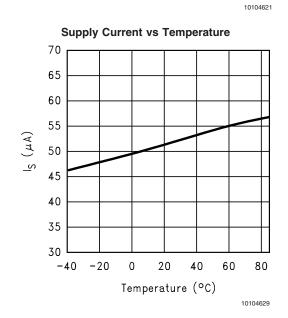
LM4130

LM4130 Typical Performance Characteristics $T_A = 25^{\circ}C$, No Load, $V_{IN} = 5.0V$, unless otherwise noted. (Continued)


Output Voltage vs Load Current

10


1

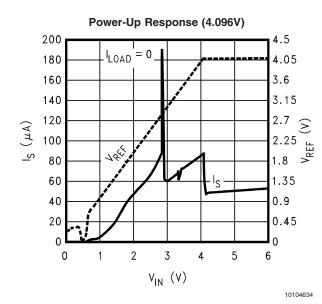

0

0

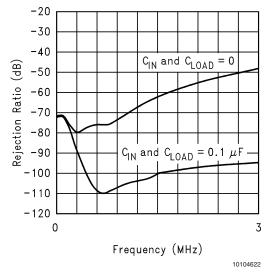
Short Circuit Current vs Temperature

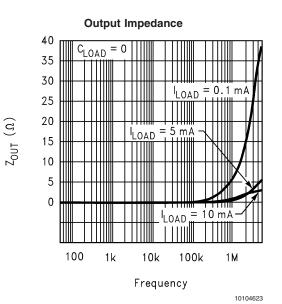
20

Load Current (mA)

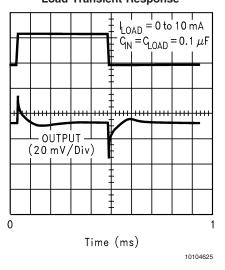

30

40

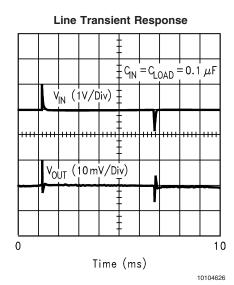

50

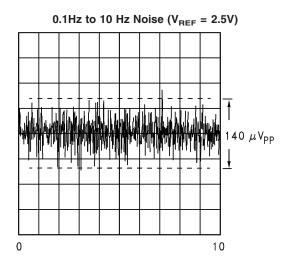

LM4130 Typical Performance Characteristics $T_A = 25^{\circ}C$, No Load, $V_{IN} = 5.0V$, unless

otherwise noted. (Continued)

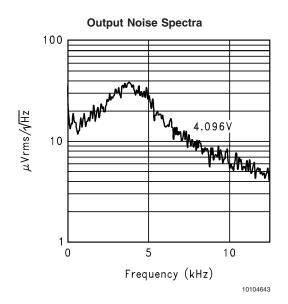


Power Supply Rejection Ratio





Load Transient Response


LM4130 Typical Performance Characteristics $T_A = 25^{\circ}C$, No Load, $V_{IN} = 5.0V$, unless otherwise noted. (Continued)

Time (seconds)

10104627

LM4130

Pin Functions

 V_{REF} (Pin 5): Reference Output. The output of the LM4130 can source up to 20 mA. It is stable with output capacitor ranges from 0 to 2.2 $\mu\text{F}.$

 V_{IN} (Pin 4):Positive Supply. Bypassing with a 0.1 μF capacitor is recommended if the output loading changes or input is noisy.

Ground (Pin 2):Negative Supply or Ground Connection.

NC (Pins 1, 3):No Connection (internally terminated). These pins must be left unconnected.

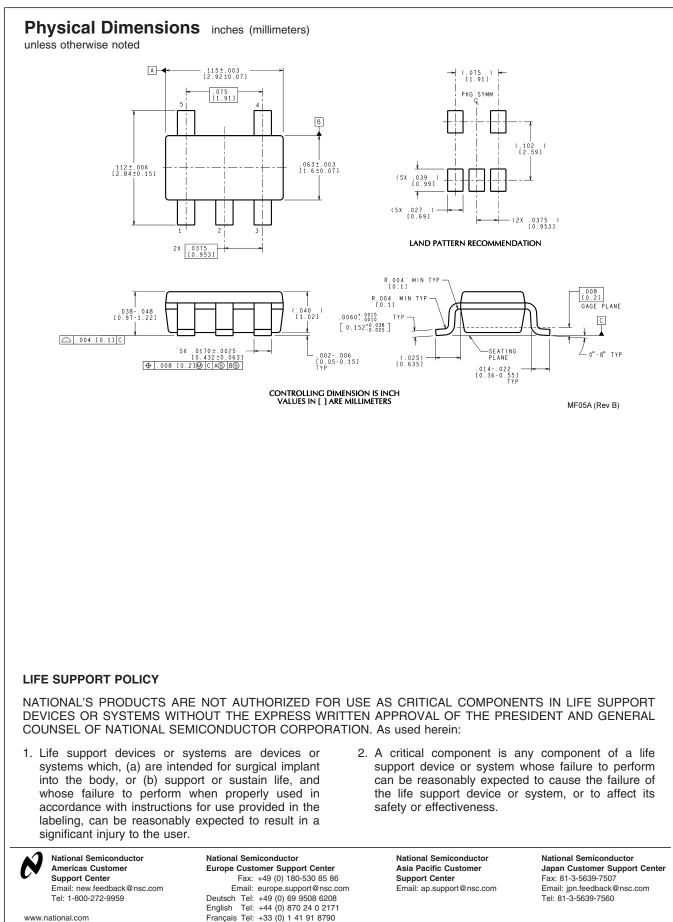
Application Information

OUTPUT CAPACITOR

The LM4130 is designed to operate with or without an output capacitor and is stable with capacitive loads of up to 2.2 μ F.

Connecting a capacitor between the output and ground will significantly improve the load transient response when switching from a light load to a heavy load. However, the output capacitor should not be made arbitrarily large because it will effect the turn-on time as well as line and load transients.

INPUT CAPACITOR


A small 0.1µF capacitor on the input significantly improves stability under a wide range of load conditions. With an input bypass capacitor, the LM4130 will drive any combination of resistance and capacitance up to $V_{\mathsf{REF}}/20\mathsf{mA}$ and 2.2 µF respectively.

Noise on the power-supply input can effect the output noise, but it can be reduced by using an optional bypass capacitor between the input pin and the ground.

PRINTED CIRCUIT BOARD LAYOUT CONSIDERATION

References in SOT packages are generally less prone to assembly stress than devices in Small Outline (SOIC) package.

To minimize the mechanical stress due to PC board mounting that can cause the output voltage to shift from its initial value, mount the reference on a low flex area of the PC board, such as near the edge or a corner.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.