

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TIME (500 ns/div)

Typical Performance Characteristics (Continued)

TL/H/10254-8

Application Information

General

The LM6118 series are high-speed, fast-settling dual opamps. To insure maximum performance, circuit board layout is very important. Minimizing stray capacitance at the inputs and reducing coupling between the amplifier's input and output will minimize problems.

Supply Bypassing

To assure stability, it is recommended that each power supply pin be bypassed with a $0.1 \mu \mathrm{~F}$ low inductance capacitor near the device. If high frequency spikes from digital circuits or switching supplies are present, additional filtering is recommended. To prevent these spikes from appearing at the output, R-C filtering of the supplies near the device may be necessary.

Power Dissipation

These amplifiers are specified to 20 mA output current. If accompanied with high supply voltages, relatively high power dissipation in the device will occur, resulting in high junction temperatures. In these cases the package thermal resistance must be taken into consideration. (See Note 5 under Electrical Characteristics.) For high dissipation, an N package with large areas of copper on the pc board is recommended.

Amplifier Shut Down

If one of the amplifiers is not used, it can be shut down by connecting both the inverting and non-inverting inputs to the V^{-}pin. This will reduce the power supply current by approximately 25%.

Capacitive Loading

Maximum capacitive loading is about 50 pF for a closedloop gain of +1 , before the amplifier exhibits excessive ringing and becomes unstable. A curve showing maximum capacitive loads, with different closed-loop gains, is shown in the Typical Performance Characteristics section.
To drive larger capacitive loads at low closed-loop gains, isolate the amplifier output from the capacitive load with 50Ω. Connect a small capacitor directly from the amplifier output to the inverting input. The feedback loop is closed from the isolated output with a series resistor to the inverting input.

Step Response, $A v=-1, V s= \pm 15 \mathrm{~V}$

TIME ($100 \mathrm{~ns} / \mathrm{div}$)
TL/H/10254-9

TL/H/10254-10
For $C_{L}=1000 \mathrm{pF}$, Small signal $\mathrm{BW}=5 \mathrm{MHz}$
20 V p-p $B W=500 \mathrm{kHz}$

TL/H/10254-11
Settling time to 0.01%, 10 V Step
For $C_{L}=1000 \mathrm{pF}$, settling time $\approx 1500 \mathrm{~ns}$
For $C_{L}=300 \mathrm{pF}$, settling time $\approx 500 \mathrm{~ns}$

Application Information (Continued)

Examples of unity gain connections for a voltage follower, Inverter, and integrator driving capacitive loads up to 1000 pF are shown here. Different R1-C1 time constants and capacitive loads will have an effect on settling times.

Input Bias Current Compensation

Input bias current of the first op amp can be reduced or balanced out by the second op amp. Both amplifiers are laid out in mirror image fashion and in close proximity to each other, thus both input bias currents will be nearly identical
and will track with temperature. With both op amp inputs at the same potential, a second op amp can be used to convert bias current to voltage, and then back to current feeding the first op amp using large value resistors to reduce the bias current to the level of the offset current.
Examples are shown here for an inverting application, (a) where the inputs are at ground potential, and a second circuit (b) for compensating bias currents for both inputs.

Amplifier/Parallel Buffer

[^0]$V_{S}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 0.01 \mu \mathrm{~F}$
Large and small signal B.W. $=1.3 \mathrm{MHz}(\mathrm{THD}=3 \%)$

Application Information (Continued)

Constant-Voltage Crossover Network With 12 dB/Octave Slope

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-10 \leq \mathrm{V}_{\mathrm{IN}} \leq 10 \mathrm{~V} \\
& \frac{\mathrm{louT}}{\mathrm{~V}_{\text {IN }}}=\frac{\mathrm{R} 4}{\mathrm{R} 2 \mathrm{R} 6}=\frac{1 \mathrm{~mA}}{1 \mathrm{~V}}
\end{aligned}
$$

Output dynamic range $=10 \mathrm{~V}-\mathrm{R} 6 \mid \mathrm{lOUT}$
$R_{L}=500 \Omega$, small signal $B W=6 \mathrm{MHz}$
Large signal response $=800 \mathrm{kHz}$
$\mathrm{C}_{\text {out }}$ equiv. $=\frac{\mathrm{R} 2+\mathrm{R} 4}{2 \pi \mathrm{f}_{\mathrm{O}} \mathrm{R} 2 \mathrm{R} 6}=32 \mathrm{pF}\left(\mathrm{f}_{\mathrm{O}}=15 \mathrm{MHz}\right)$

Small signal $\left(200 \mathrm{mV} \mathrm{p}_{\mathrm{p}}\right) \mathrm{BW} \approx 5 \mathrm{MHz}$

TL/H/10254-18
$A_{V}=10, V_{S}= \pm 15 \mathrm{~V}$, All resistors 0.01%
Small signal and large signal (20 VP-P) B.W. $\approx 800 \mathrm{kHz}$

TL/H/10254-20
$A_{V}=100, V_{S}= \pm 15 \mathrm{~V}$
Small signal BW $\approx 1.5 \mathrm{MHz}$
Large signal BW $\left(20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right) \approx 800 \mathrm{kHz}$

Schematic Diagram (Continued)

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters)

8-Lead Molded Small Outline Package (M) Order Number LM6218AWM or LM6218WM NS Package Number M14B

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: $\mathrm{A}_{\mathrm{V}}=+5$, $\mathrm{lout} \leq 80 \mathrm{~mA}$

