	262/LM6362 Operational Ar	nnlifier		
eneral Descript e LM6362 family of high- llent speed-power produ 0 MHz gain-bandwidth pro 2 or -1) with only 5 mA of vings and application com- vantage of the wide dyna Itage which extends all th lese amplifiers are built we egrated PNP) process whi a true complements to the vanced junction-isolated p	ion speed amplifiers exhibits an uct, delivering 300 V/μs a duct (stable for gains as low of supply current. Further poi venience are possible by tak amic range in operating sup	 Low supply cu Fast settling ti Low differentia Low differentia Low differentia Wide supply ra Stable with un Well behaved; Applicatio Video amplifie Wide-bandwid ing (FAX, scar Hard disk drive Error amplifier 	me 12 al gain al phase ange limited capacitive load easy to apply NS r th signal conditioning for im nners, laser printers)	
20-Lead LCC	10 Di-			
AUJUST 4 2 11 20 19 4 2 11 20 19 4 2 11 10 5 17 6 LMG162E 16 9 10 11 12 15 9 10 11 12 15 4 2 11 20 19 10 1	v ₀₅ ADJUST NC 1 V ₀₅ ADJUST NC 1 V ₀₅ ADJUST 3 INV INPUT 4 NON-INV INPUT 4 V-5 See NS Pac	Ceramic Flatpak		
AUJUST INV. INPUT INV. INV. INPUT INV. INV. INV. INV. INV. INV. INV. INV.	v ₀₅ ADJUST v ₀₅ ADJUST NV INPUT v ₀ v ₀ v ₀ v ₀ v ₀ NON-INV INPUT See NS Par /H/11061-14 er E20A Temperature Range	LM6162W	5 Adjust V+ Vour a 7 b your Vour 1 2 3 Vour Vour 1 2 Adjust V+ Vour 1 2 Adjust V+	s 4 7 7 7 7 7 7 7 7 7 7 7 7 7
$\begin{array}{c c} \text{AUAST} \\ \hline \\ \text{NV. INFUT} \\ \text{NV. INFUT} \\ \text{NFUT} \\ \text{NV. INFUT} \\ \text{V. INFUT} \\ V. IN$	$\begin{array}{c} & \text{v}_{05} \text{ ADUST} \\ & \text{v}_{05} \text{ ADUST} \\ & \text{v}_{05} \text{ ADUST} \\ & \text{INV} \text{ HPUT} \\ & \text{INV} \text{ HPUT} \\ & \text{V}_{01} \\ & \text{VOUT} \\ \end{array}$	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ & & & & \\ & & & &$	Adjust v+ Vour a 7 6 i 1 2 3 Vos INV NI Adjust input See NS Package Num M08A or J08 Package	TL/H/11061-2 TL/H/11061-2 TL/H/11061-2 TL/H/11061-2 TL/H/11061-2
$\begin{array}{c} \text{ADUST}\\ \text{W}, \text{ INPUT}\\ \text{See NS Package Number}\\ \hline \\ \hline \\ \text{Military}\\ -55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}\\ \text{IM6162N}\\ \end{array}$	v ₀₅ ADUST v ₀₅ ADUST NC 1 v ₀₅ ADUST INV INPUT NON-INV INPUT vout See NS Par /H/11061–14 Pr E20A Temperature Range Industrial	LM6162W	Adjust V+ Vour a 7 b 7 b 7 c 1 c 1 c 2 c 3 c 1 c 1 c 1 c 2 c 3 c 1 c 1 c 1 c 2 c 3 c 1 c 1 c 2 c 3 c 1 c 1 c 2 c 3 c 1 c 2 c 3 c 2 c 2 c 3 c 2 c 2 c 3 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2	s tL/H/11061-2 tL/H/11061-2 ber N08E, A NSC Drawing N08E
	$\begin{array}{c} & \text{v}_{05} \text{ ADUST} \\ & \text{v}_{05} \text{ ADUST} \\ & \text{v}_{05} \text{ ADUST} \\ & \text{INV} \text{ HPUT} \\ & \text{INV} \text{ HPUT} \\ & \text{V}_{01} \\ & \text{VOUT} \\ \end{array}$	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ & & & & \\ & & & &$	Adjust v+ Vour a 7 6 i 1 2 3 Vos INV NI Adjust input See NS Package Num M08A or J08 Package	TL/H/11061-2 TL/H/11061-2 TL/H/11061-2 TL/H/11061-2 TL/H/11061-2
$\begin{array}{c} \text{ADUST} \\ & \text{INV. INPUT} \\ & \text{INPUT} \\ & \text{INV. INPUT} \\ & \text{INV. INPUT \\ & \text{INV. INPUT} \\ & \text{INV. INPUT} \\ & \text{INV. INPUT} \\ & \text{INV. INPUT \\ & \text{INV. INPUT \\ & \text{INV. INPUT} \\ & INV$	$\begin{array}{c} & \text{v}_{05} \text{ ADUST} \\ & \text{v}_{05} \text{ ADUST} \\ & \text{v}_{05} \text{ ADUST} \\ & \text{INV} \text{ HPUT} \\ & \text{INV} \text{ HPUT} \\ & \text{V}_{01} \\ & \text{VOUT} \\ \end{array}$	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ & & & & \\ & & & &$	Adjust V+ Vour a 7 b 7 b 7 c 1 c 1 c 2 c 3 c 1 c 1 c 1 c 2 c 3 c 1 c 1 c 1 c 2 c 3 c 1 c 1 c 2 c 3 c 1 c 1 c 2 c 3 c 1 c 2 c 3 c 2 c 2 c 3 c 2 c 2 c 3 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2	s tL/H/11061-2 tL/H/11061-2 ber N08E, A NSC Drawing N08E
	$\begin{array}{c} & \text{v}_{05} \text{ ADUST} \\ & \text{v}_{05} \text{ ADUST} \\ & \text{v}_{05} \text{ ADUST} \\ & \text{INV INPUT} \\ & \text{INV INPUT} \\ & \text{v}_{0} \\ & \text{v}_{0$	$\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$	Adjust V+ Vor a 7 e a 7 e b 1 2 3 NU NI NORA or J08 Package 8-Pin Molded DIP 8-Pin Ceramic DIP	s

©1995 National Semiconductor Corporation TL/H/11061

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage $(V^+ - V^-)$ 36V

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Storage Temperature Range	$-65^{\circ}C \leq T_{J} \leq +150^{\circ}C$
Max Junction Temperature	150°C
ESD Tolerance (Note 5)	±1100V

Operating Ratings

Temperature Range (Note 6)

	remperature nange (note o)	
	LM6162	$-55^{\circ}C \leq T_{J} \leq +125^{\circ}C$
260°C	LM6262	$-25^{\circ}C \leq T_{J} \leq +85^{\circ}C$
215°C	LM6362	$0^{\circ}C \leq T_{J} \leq + 70^{\circ}C$
220°C	Supply Voltage Range	4.75V to 32V

DC Electrical Characteristics

Differential Input Voltage (Note 2)

Output Short Circuit to GND (Note 4)

Common-Mode Input Voltage

Soldering Information Dual-In-Line Package (N) Soldering (10 seconds) Small Outline Package (M) Vapor Phase (60 seconds) Infrared (15 seconds)

(Note 3)

These limits apply for supply voltage = $\pm 15V$, $V_{CM} = 0V$, and $R_L \ge 100 \text{ k}\Omega$, unless otherwise specified. Limits in standard typeface are for $T_A = T_J = 25^{\circ}C$; limits in **boldface type** apply over the **Operating Temperature Range**.

 $\pm 8V$

(V⁺-0.7V) to

 $(V^- + 0.7V)$

Continuous

Symbol	Parameter	Conditions	Typical (Note 7)	LM6162 Limit (Note 8)	LM6262 Limit (Note 8)	LM6362 Limit (Note 8)	Units
V _{OS}	Input Offset Voltage		±3	±5 ±8	±5 ±8	±13 ±15	mV max
$rac{\Delta V_{OS}}{\Delta Temp}$	Input Offset Voltage Average Drift		7				μV/°C
I _{bias}	Input Bias Current		2.2	3 6	3 5	4 6	μA max
I _{OS}	Input Offset Current		±150	±350 ± 800	±350 ± 600	±1500 ± 1900	nA max
$rac{\Delta I_{OS}}{\Delta Temp}$	Input Offset Current Average Drift		0.3				nA/°C
R _{IN}	Input Resistance	Differential	180				kΩ
C _{IN}	Input Capacitance		2.0				pF
A _{VOL}	Large Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L = 2 k\Omega$ (Note 9)	1400	1000 500	1000 700	800 650	V/V min
		$R_L = 10 k\Omega$	6500				V/V
V _{CM}	Input Common-Mode Voltage Range	Supply = $\pm 15V$	+14.0	+ 13.9 + 13.8	+ 13.9 + 13.8	+ 13.8 + 13.7	V min
			-13.2	-12.9 - 12.7	-12.9 - 12.7	-12.9 - 12.8	V max
		Supply = +5V (Note 10)	4.0	3.9 3.8	3.9 3.8	3.8 3.7	V min
			1.6	1.8 2.0	1.8 2.0	1.9 2.0	V max
CMRR	Common-Mode Rejection Ratio	$-10V \leq V_{CM} \leq +10V$	100	83 79	83 79	76 74	dB min
PSRR	Power Supply Rejection Ratio	$\pm 10V \le V_S \le \pm 16V$	93	83 79	83 79	76 74	dB min
V _O	Output Voltage Swing	Supply = ± 15 V, R _L = 2 k Ω	+ 14.2	+ 13.5 + 13.3	+ 13.5 + 13.3	+ 13.4 13.3	V min
			- 13.4	-13.0 - 12.7	13.0 12.8	-12.9 - 12.8	V max

DC Electrical Characteristics (Continued)

These limits apply for supply voltage = $\pm 15V$, $V_{CM} = 0V$, and $R_L \ge 100 \text{ k}\Omega$, unless otherwise specified. Limits in standard typeface are for $T_A = T_J = 25^{\circ}C$; limits in **boldface type** apply over the **Operating Temperature Range**.

Symbol	Parameter	Conditions	Typical (Note 7)	LM6162 Limit (Note 8)	LM6262 Limit (Note 8)	LM6362 Limit (Note 8)	Units
Vo	Output Voltage Swing	Supply = $+5V$ and $R_L = 2 k\Omega$ (Note 10)	4.2	3.5 3.3	3.5 3.3	3.4 3.3	V min
			1.3	1.7 2.0	1.7 1.9	1.8 1.9	V max
I _{OSC}	Output Short Circuit Current	Sourcing	65	30 20	30 25	30 25	mA min
		Sinking	65	30 20	30 25	30 25	mA min
I _S	Supply Current		5.0	6.5 6.8	6.5 6.7	6.8 6.9	mA max

AC Electrical Characteristics

These limits apply for supply voltage = $\pm 15V$, V_{CM} = 0V, R_L $\geq 100 \text{ k}\Omega$, and C_L $\leq 5 \text{ pF}$, unless otherwise specified. Limits in standard typeface are for T_A = T_J = 25°C; limits in **boldface type** apply over the **Operating Temperature Range**.

Symbol	Parameter	Conditions	Typical (Note 7)	LM6162 Limit (Note 8)	LM6262 Limit (Note 8)	LM6362 Limit (Note 8)	Units
GBW	Gain-Bandwidth Product	f = 20 MHz	100	80 55	80 65	75 65	MHz min
		Supply = $\pm 5V$	70				MHz
SR	Slew Rate	A _V = +2 (Note 11)	300	200 180	200 180	200 180	V/µs min
		Supply = $\pm 5V$	200				V/µs
PBW	Power Bandwidth	$V_{OUT} = 20 V_{PP}$	4.5				MHz
ts	Settling Time	10V step, to 0.1% $A_V = -1$, $R_L = 2 k\Omega$	100				ns
φm	Phase Margin	$A_V = +2$	45				deg
	Differential Gain	NTSC, $A_V = +2$	<0.1				%
	Differential Phase	NTSC, $A_V = +2$	<0.1				deg
e _n	Input Noise Voltage	f = 10 kHz	10				nV <i>I</i> √ Hz
i _n	Input Noise Current	f = 10 kHz	1.2				pA∕√ Hz

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: The ESD protection circuitry between the inputs will begin to conduct when the differential input voltage reaches 8V.

Note 3: a) In addition, the voltage between the V⁺ pin and either input pin must not exceed 36V.

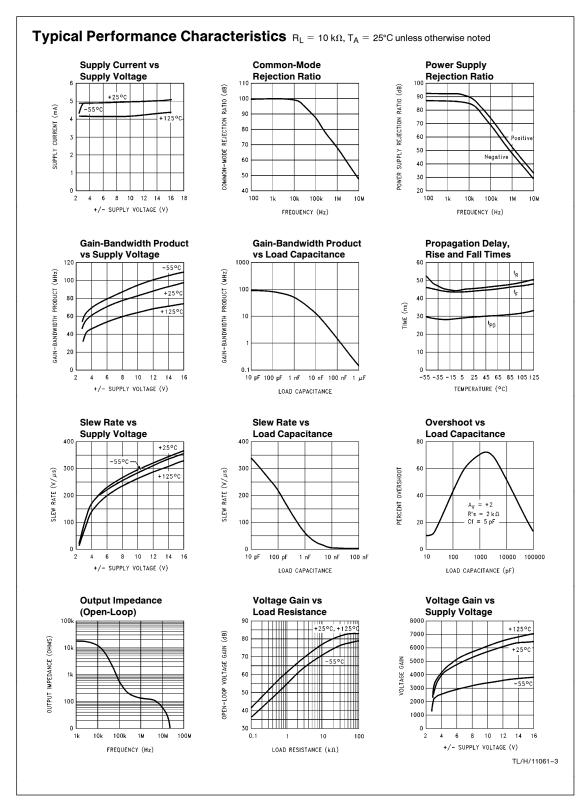
b) When the voltage applied to an input pin is driven more than 0.3V below the negative supply pin voltage, a substrate diode begins to conduct. Current through this pin must then be kept less than 20 mA to limit damage from self-heating.

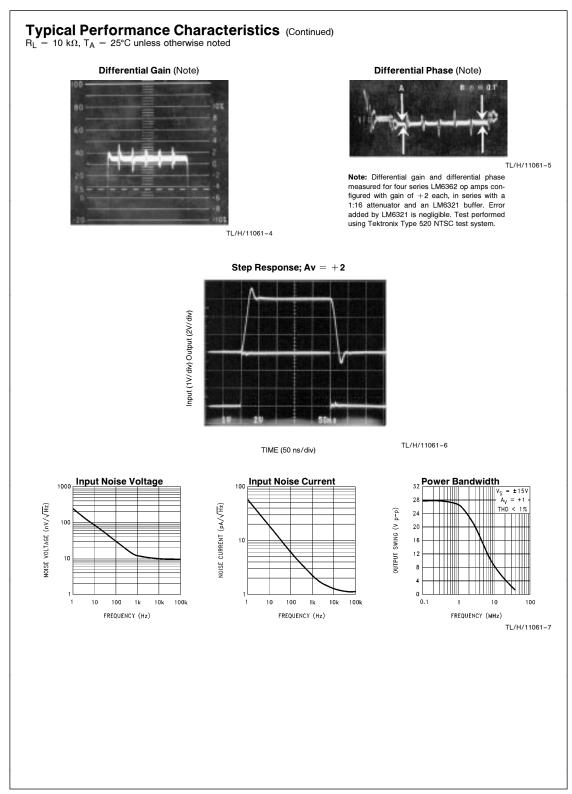
Note 4: Although the output current is internally limited, continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

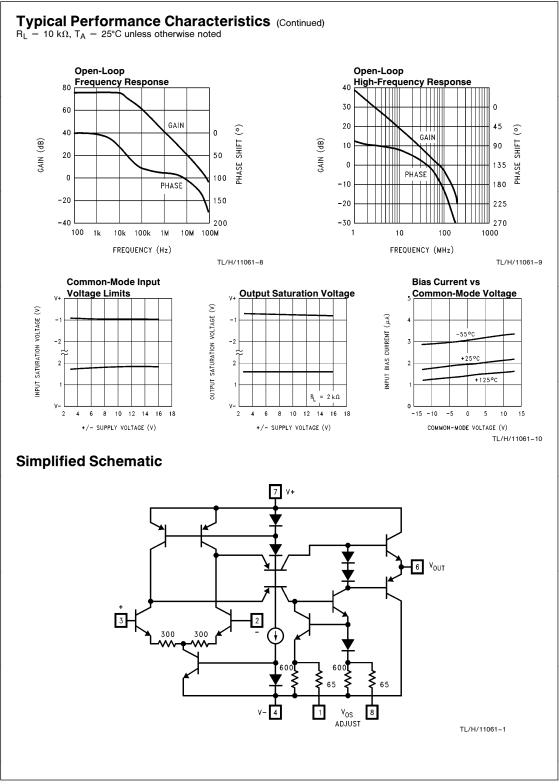
Note 5: This value is the average voltage that the weakest pin combinations can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model, 100 pF in series with 1500Ω.

Note 6: The typical thermal resistance, junction-to-ambient, of the molded plastic DIP (N package) is 105°C/W. For the molded plastic SO (M package), use 155°C/W. All numbers apply for packages soldered directly into a printed circuit board.

Note 7: Typical values are for T_J = 25°C, and represent the most likely parametric norm.


Note 8: Limits are guaranteed, by testing or correlation.


Note 9: Voltage Gain is the total output swing (20V) divided by the magnitude of the input signal required to produce that swing.


Note 10: For single-supply operation, the following conditions apply: $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 2.5V$, $V_{OUT} = 2.5V$. Pin 1 and Pin 8 (V_{OS} Adjust pins) are each connected to pin 4 (V^-) to realize maximum output swing. This connection will increase the offset voltage.

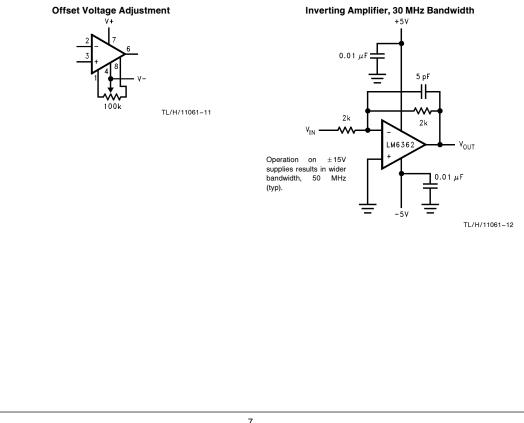
Note 11: $V_{IN}\,=\,$ 10V step. For $\pm\,5V$ supplies, $V_{IN}\,=\,$ 1V step.

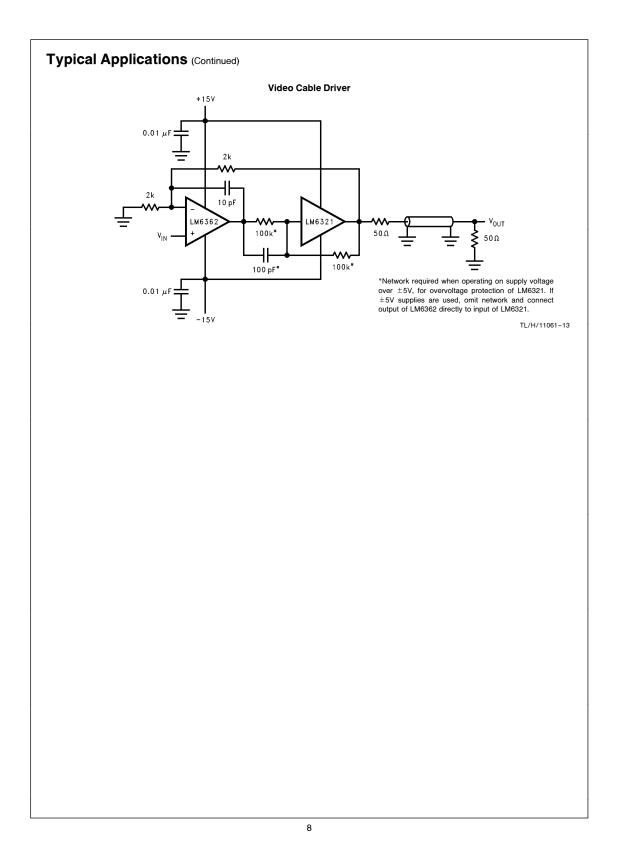
Note 12: A military RETS electrical test specification is available on request.

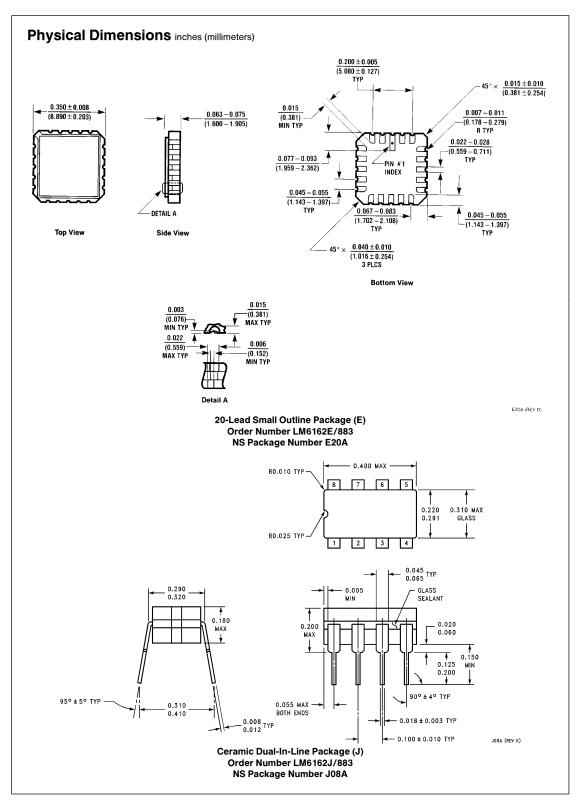
Application Tips

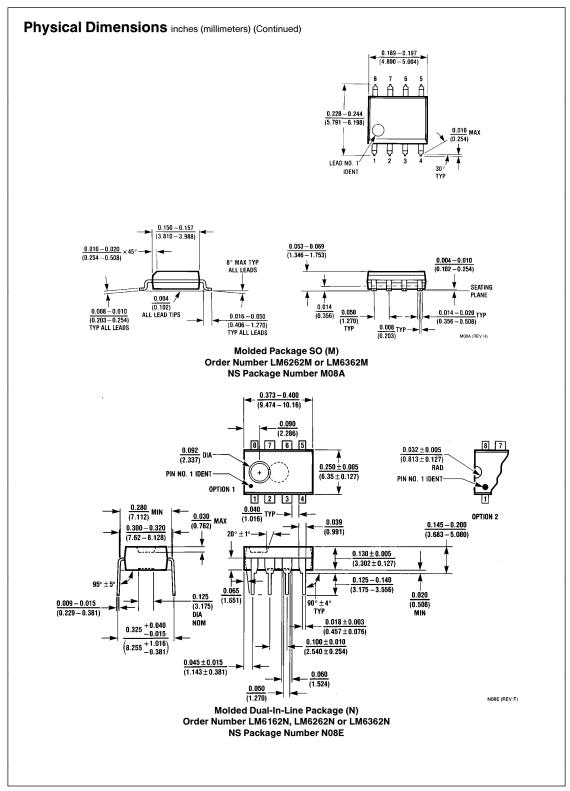
The LM6362 has been decompensated for a wider gainbandwidth product than the LM6361. However, the LM6362 still offers stability at gains of 2 (and -1) or greater over the specified ranges of temperature, power supply voltage, and load. Since this decompensation involved reducing the emitter-degeneration resistors in the op amp's input stage, the DC precision has been increased in the form of lower offset voltage and higher open-loop gain.

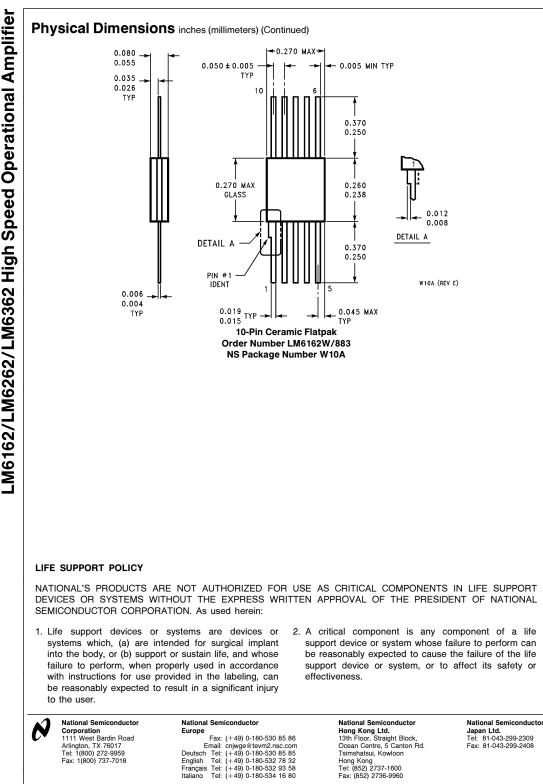
Other op amps in this family include the LM6361, LM6364, and LM6365. If unity-gain stability is required, the LM6361 should be used. The LM6364 has been decompensated for operation at gains of 5 or more, with corresponding greater gain-bandwidth product (125 MHz, typical) and DC precision. The fully-uncompensated LM6365 offers gain-bandwidth product of 725 MHz, typical, and is stable for gains of 25 or more. All parts in this family, regardless of compensation, have the same high slew rate of 300 V/ μ s (typ).


The LM6362 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (in low-gain circuits). However, load capacitance on the LM6362 effectively increases its compensation capacitance, thus slowing the op amp's response and reducing its bandwidth. The compensation is not ideal, though, and ringing may occur in low-gain circuits with large capacitive loads.


Power supply bypassing is not as critical for LM6362 as it is for other op amps in its speed class. However, bypassing will improve the stability and transient response of the LM6362, and is recommended for every design. 0.01 μF to 0.1 µF ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional 2.2 µF to 10 µF of tantalum may be required for extra noise reduction.


Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling from one pin, input or lead to another, and can cause circuit gain to unintentionally vary with frequency.


Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit frequency response. At low gains (+2 or -1), a feedback capacitor Cf from output to inverting input will compensate for the phase lag caused by capacitance at the inverting input. Typically, values from 2 pF to 5 pF work well; however, best results can be obtained by observing the amplifier pulse response and optimizing Cf for the particular lavout.


Typical Applications

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications