

MICROCIRCUIT DATA SHEET

MNLMH6720-X REV 0A0

Original Creation Date: 03/17/04 Last Update Date: 03/24/04 Last Major Revision Date:

LMH6720 WIDEBAND VIDEO OP AMP; SINGLE WITH SHUT DOWN

General Description

The LMH6720 series combine National's VIP10 (TM) high speed complementary bipolar process with National's current feedback topology to produce a very high speed op amp. These amplifiers provide a 400MHz small signal bandwidth at a gain of $\pm 2V/V$ and a 1800V/uS slew rate while consuming only 5.6mA from $\pm 5V$ supplies.

The LMH6720 offers exceptional video performance with its 0.01% and 0.01 differential gain and phase errors for NTSC and PAL video signals while driving a back terminated 75 Ohms load. They also offer a flat gain respose of 0.1dB to 120MHz. Additionally, they can deliver 70mA continuous output current. This level of performance makes them an ideal op amp for broadcast quality video systems.

The LMH6720 low power requirement, low noise and distortion allow the LMH6720 to serve portable RF applications. The high impedance state during shutdown makes the LMH6720 suitable for use in multiplexing multiple high speed signals onto a shared transmission line. The LMH6720 is also ideal for portable applications where current draw can be reduced with the shutdown function.

Industry Part Number

LMH6720

Prime Die

LMH6720

Controlling Document

SEE FEATURES SECTION

Processing	Subgrp	Description	Temp	(°C)
MIL-STD-883, Method 5004	1	Static tests at	+25	
	2	Static tests at	+125	
	3	Static tests at	-55	
Ouality Conformance Inspection	4	Dynamic tests at	+25	
2	5	Dynamic tests at	+125	
MIL_STD_883 Method 5005	6	Dynamic tests at	-55	
MIL-SID-005, Method 5005	7	Functional tests at	+25	
	8A	Functional tests at	+125	
	8B	Functional tests at	-55	
	9	Switching tests at	+25	
	10	Switching tests at	+125	
	11	Switching tests at	-55	

NS Part Numbers

LMH6720J-QML LMH6720WG-QML

Features

- 400MHz (Av = +2V/V, Vout = 500mVpp) -3dB Bw
- 250MHz (Av = +2V/V, Vout = 2Vpp) -3dB Bw
- 0.1dB gain flatness to 120MHz
- Low power: 5.6mA
- TTL compatible shutdown pin
- -58 HD2/ -70 HD3 at 10MHz
- Fast slew rate: 1800V/uS
- Low shutdown current: 500uA
- 11nS turn on time
- 7nS shutdown time
- Unity gain stable
- Improved replacement for $\ensuremath{\mathsf{CLC405}}$

CONTROLLING DOCUMENTS:

LMH6720J-QML 5962-0420301QPA LMH6720WG-QML 5962-0420301QZA

Applications

- HDTV, NTSC & PAL video systems
- Wideband active filters
- Cable drivers
- High speed multiplexer
- Programmable gain amplifier

(Absolute Maximum Ratings)

(Note 1)

Vcc		<u>+</u> 6.75Vdc
Iout (Note 3)		are Note 2
Common Mode Input	Voltage	See Note 3
Differential Input	: Voltage	±vcc
Maximum Junction 7	Cemperature	2.2V
(Note 2)		+150 C
Lead temperature (soldering, 10 seconds)	+300 C
Storage Temperatur	re Range	-65 C <u>≤</u> Ta <u>≤</u> +150 C
Shutdown Pin Volta (Note 4)	age	
		+Vcc to Vcc/2-1V
Thermal Resistance ThetaJA (Junct CERAMIC DIP CERAMIC SOIC	s tion to Ambient) (Still Air) (500LF/Min Air Flow) (Still Air) (500LF/Min Air Flow)	170 C/W 105 C/W 230 C/W 170 C/W
ThetaJC CERAMIC DIP CERAMIC SOIC		30 C/W 40 C/W
Package Weight (typical) CERAMIC DIP CERAMIC SOIC		1090mg 220mg
ESD Tolerance (Note 5)		

4000V

- Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions see the Electrical Characteristics. The guaranteed specifications apply when the device is not operated under the listed test conditions.
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA) / ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower. The maximum output current (Iout) is determined by device power dissipation
- Note 3: limitations.
- The shutdown pin is designed to work between 0 and Vcc with split supplies (Vcc = -Vee). With single supplies (Vee = ground) the shutdown pin should not be taken below Note 4: Vcc/2.
- Note 5: Human body model, 100pF discharged through 1.5K Ohms.

Recommended Operating Conditions

Operating Temperature Range (Ta)

Nominal Supply voltage (Vs)

-55 C \leq Ta \leq +125 C

<u>+</u>5V to <u>+</u>6V

Electrical Characteristics

DC PARAMETERS:

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Av = +2, Rf = 348 Ohm, Vcc = \pm 5V, R load = 100 Ohms, -55 C < = Ta <= +125 C (NOTE 1)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset				-6	+6	mV	1
					-10	+10	mV	2, 3
Ibn	Input Bias Current	Non-Inverting			-10	+10	uA	1
					-15	+15	uA	2, 3
Ibi Input Bias Current	Input Bias Current	Inverting			-12	+12	uA	1
					-20	+20	uA	2, 3
PSRR Power Rejec	Power Supply Rejection Ratio	DC			48		dB	1
					47		dB	2, 3
Icc Pos Supply Current	Supply Current	R load = infinity			3.0	7.5	mA	1
					3.0	8.0	mA	2, 3
Icc Neg S	Supply Current	R load = infinity			-7.5	-3	mA	1
					-8	-3	mA	2, 3
IccD Supply Curr During Shut	Supply Current During Shutdown					0.67	mA	1
	Dar ing Shacaown					1	mA	2, 3

AC PARAMETERS: Frequency Domain Response

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Av = +2, Rf = 348 Ohm, Vcc = $\pm 5V$, R load = 100 Ohms, -55 C < = Ta <= +125 C (NOTE 1)

SSBW	Small Signal Bandwith	-3dB bandwidth, Vout < 1. 0 Vpp		345		MHz	4
GFRH	Gain Flatness Rolloff	0.1 MHz to 30 MHz			0.3	dB	4

AC PARAMETERS: Distortion and Noise Test

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Av = +2, Rf = 348 Ohm, Vcc = \pm 5V, R load = 100 Ohms, -55 C < = Ta <= +125 C (NOTE 1)

HD2	2nd Harmonic Distortion	2Vpp at 10 MHz, Vout = 2Vpp		46	dB	4
HD3	3rd Harmonic Distortion	2Vpp at 10 MHz, Vout = 2Vpp		50	dB	4

Note 1: The algebraic convention, whereby the most negative value is a minimum and the most positive is a maximum, is used in this table. Negative current shall be defined as conventional current flow out of a device terminal.

GRAPHICS#	DESCRIPTION
06409HRA3	CERAMIC SOIC (WG), 10 LEAD (B/I CKT)
07077HRA6	CERDIP (J), 8 LEAD (B/I CKT)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000490A	CERDIP (J), 8 LEAD (PIN OUT)
P000491A	CERAMIC SOIC (WG), 10 LEAD (PIN OUT)
WG10ARC	CERPACK (WG), 10 LEAD (P/P DWG)

Graphics and Diagrams

See attached graphics following this page.

LMH6720J 8 - LEAD CER-DIP CONNECTION DIAGRAM TOP VIEW

P000490A

National Sem iconductor M LL A ERO SEA CE OPERATIONS 2900 SEM ICONDUCTOR DRIVE SANTA CLARA, CA 95050

LMH6720W/WG 10 - LEAD FLAT PACK/SOIC CONNECTION DIAGRAM TOP VIEW P000491A

National Sem iconductor

M IL/AEROSPACE OPERATIONS 2900 SEM ICONDUCTOR DRIVE SANTA CLARA,CA 95050

