Boca Semiconductor Corp.

BSC

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	65	Vdc
Collector-Emitter Voltage, RBE ≤ 10 Ohms	VCER	80	Vdc
Collector-Base Voltage	VCBO	120	Vdc
Emitter-Base Voltage	VEBO	7.0	Vdc
Collector Current — Continuous	lc	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _θ J _A (1)	175	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W

2N2102

CASE 79-04, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N3019 for graphs.

ELECTRICAL	CHARACTERISTICS	(T _A =	25°C unless otherwise noted.)

s) 80 is) 65 X 120		-	-	Vdc Vdc Vdc
s) 65 X 120		-	-	Vdc
X 120		-	_	
^)			Vdc
O 120)	-		Vdc
0 7.0	_	-		Vdc
		1 -	·- I	nAdc μAdc
		2	.0	nAdc
	7.0 — — —	7.0 — — — — — — — — — — — — — — — — — — —	2 2	7.0

$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	hFE	20 35 20 40 25 10	 	 120 	
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)(2)	V _{CE(sat)}	_	0.15	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)(2)	V _{BE(sat)}		0.88	1.1	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product $(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz})$	fT	60		_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	I . –	6.0	15	pF
Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz)	Cibo		50	80	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	hib	24 4.0	<u> </u>	34 8.0	Ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{rb}	_		3.0 3.0	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	30 35	_	100 150	_
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{ob}	0.01 0.01	_	0.5 1.0	μmho
Noise Figure (I _C = 300 µAdc, V _{CE} = 10 Vdc, R _S = 1.0 k Ohm, f = 1.0 kHz. Bandwidth = 1.0 Hz)	NF	_	4.0	6.0	dB

SWITCHING CHARACTERISTICS

 $t_d + t_r + t_f$ Switching Time (1) R_{BJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test Pulse Width ≤ 300 µs, Duty Cycle ≤ 20%.