
Amplifier TransistorsPNP Silicon

2N5400 2N5401*

*Motorola Preferred Device

Boca Semiconductor Corp.

BASE 1 1 EMIT

(BSC)

CASE 29–04, STYLE 1 TO–92 (TO–226AA)

MAXIMUM RATINGS

Rating	Symbol	2N5400	2N5401	Unit
Collector-Emitter Voltage	VCEO	120	150	Vdc
Collector-Base Voltage	V _{CBO}	130	160	Vdc
Emitter-Base Voltage	V _{EBO}	5.0		Vdc
Collector Current — Continuous	lc	600		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteris	tic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				•	•
Collector-Emitter Breakdown Voltage ⁽¹⁾ (I _C = 1.0 mAdc, I _B = 0)	2N5400 2N5401	V _(BR) CEO	120 150	_ _	Vdc
Collector – Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	2N5400 2N5401	V(BR)CBO	130 160	=	Vdc
Emitter-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current (VCB = 100 Vdc, IE = 0) (VCB = 120 Vdc, IE = 0) (VCB = 100 Vdc, IE = 0, TA = 100°C) (VCB = 120 Vdc, IE = 0, TA = 100°C)	2N5400 2N5401 2N5400 2N5401	СВО	_ _ _ _	100 50 100 50	nAdc μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)		I _{EBO}	_	50	nAdc

^{1.} Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%.

2N5400 2N5401

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS(1)				•	
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	2N5400 2N5401	hFE	30 50	_	_
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N5400 2N5401		40 60	180 240	
$(I_C = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N5400 2N5401		40 50	_ _	
Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc)		VCE(sat)		0.2 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		V _{BE(sat)}		1.0 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (IC = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	2N5400 2N5401	fτ	100 100	400 300	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	6.0	pF
Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)	2N5400 2N5401	h _{fe}	30 40	200 200	_
Noise Figure (I _C = 250 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz)		NF	_	8.0	dB

^{1.} Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%.

http://www.bocasemi.com

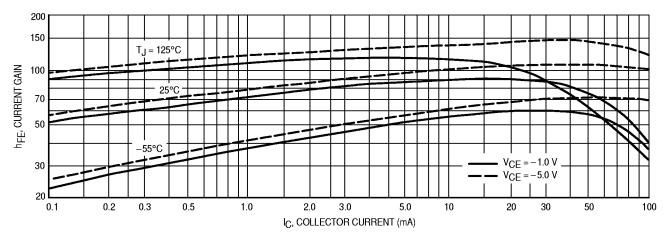


Figure 1. DC Current Gain

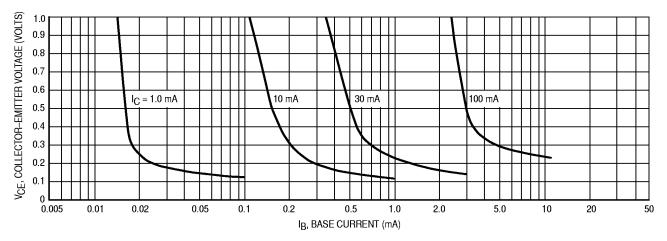


Figure 2. Collector Saturation Region

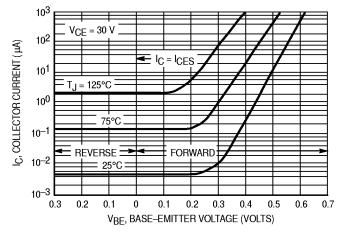


Figure 3. Collector Cut-Off Region

http://www.bocasemi.com

2N5400 2N5401

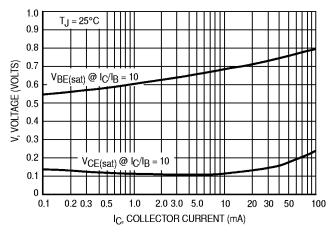


Figure 4. "On" Voltages

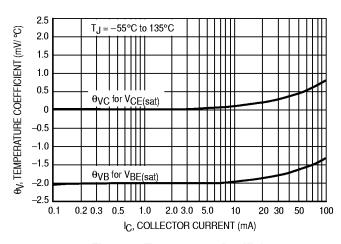
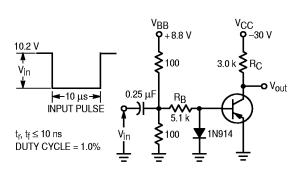



Figure 5. Temperature Coefficients

Values Shown are for IC @ 10 mA

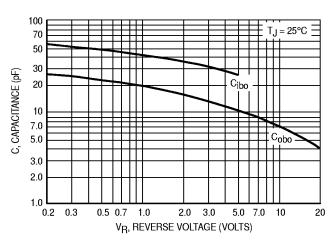


Figure 7. Capacitances

Figure 6. Switching Time Test Circuit

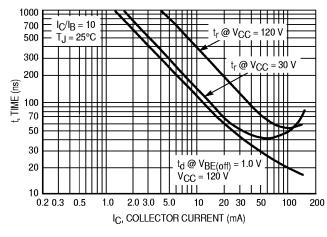


Figure 8. Turn-On Time

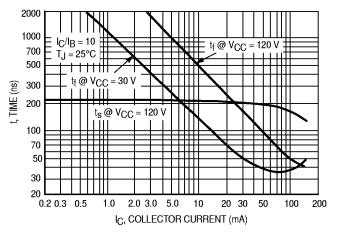
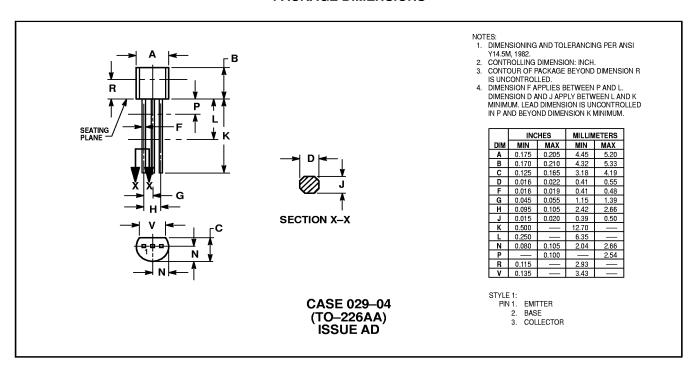



Figure 9. Turn-Off Time

PACKAGE DIMENSIONS

http://www.bocasemi.com