



TO-220 Plastic Package

2N6486, 2N6487, 2N6488 2N6489, 2N6490, 2N6491

6486 6487 6488

2N6486, 6487, 6488NPN PLASTIC POWER TRANSISTORS2N6489, 6490, 6491PNP PLASTIC POWER TRANSISTORSGeneral Purpose Amplifier and Switching Applications

ABSOLUTE MAXIMUM RATINGS

			<i>6489</i>	<i>6490</i>	6491	
Collector-base voltage (open emitter)	V_{CBO}	max.	50	70	90	V
Collector-emitter voltage (open base)	V_{CEO}	max.	40	60	80	V
Collector current	I_C	max.		15		Α
Total power dissipation up to $T_C = 25^{\circ}C$	P _{tot}	max.		75		W
Junction temperature	T_i	max.		150		$^{\circ}C$
Collector-emitter saturation voltage	5					
$I_C = 5 A; I_B = 0.5 A$	V _{CEsat}	max.		1.3		V
D.C. current gain						
$I_C = 5 A$; $V_{CE} = 4 V$	h_{FE}	min.		20		
		max.		150		

RATINGS (at $T_A=25$ °C unless otherwise specified) Limiting values

Limiting values			<i>6486</i>	648 7	6488	
			<i>6489</i>	6490	<i>6491</i>	
Collector-base voltage (open emitter)	V _{CBO}	max.	50	70	90	V
Collector-emitter voltage (open base)	V_{CEO}	max.	40	60	80	V
Emitter-base voltage (open collector)	VEBO	max.		5.0		V

2N6486, 2N6487, 2N6488 2N6489, 2N6490, 2N6491

- N	_			
Collector current	I_C	max.	15	A
Base current	I_B	max.	5.0	A
Total power dissipation up to $T_C = 25^{\circ}C$	\bar{P}_{tot}	max.	75	W
Derate above 25°C		max.	0.6	W°C
Total power dissipation up to $T_A = 25^{\circ}C$	P _{tot}	max.	1.8	W
Derate above 25°C		max.	0.014	W°C
Junction temperature	T_i	max.	150	$^{\circ}\!C$
Storage temperature	1'stg		-65 to +150	${}^{\mathcal{C}}$
THERMAL RESISTANCE				
From junction to ambient	R _{th i-a}		70	°CW
From junction to case	R _{th j-a} R _{th j-c}		1.67	°CW
CHARACTERISTICS				
T _{amb} = 25°C unless otherwise specified				
				~

6486 6487 6488 6489 6490 6491

		0489	0490	0491	
Collector cutoff current					
$I_B = 0; V_{CE} = 20 V$	I _{CEO}	max. 1.0	-	-	mA
$I_B = 0; V_{CE} = 30 V$	ICEO	max. –	1.0	-	mA
$I_B = 0; V_{CE} = 40 V$	I _{CEO}	<i>max.</i> –	-	1.0	mA
$V_{EB(off)} = 1.5 V; V_{CE} = 45 V$	ICEX	max. 500	-	-	μA
$V_{EB(off)} = 1.5 V; V_{CE} = 65 V$	ICEX	<i>max.</i> –	500	-	μA
$V_{EB(off)} = 1.5 V; V_{CE} = 85 V$	ICEX	<i>max.</i> –	-	500	μA
$V_{EB(off)} = 1.5 V; V_{CE} = 40 V; T_{C} = 150^{\circ}$	C ICEX	max. 5.0	-	-	mA
$V_{EB(off)} = 1.5 V; V_{CE} = 60 V; T_{C} = 150^{\circ}$	C ICEX	<i>max.</i> –	5.0	-	mA
$V_{EB(off)} = 1.5 V; V_{CE} = 80 V; T_C = 150^{\circ}$	C ICEX	<i>max.</i> –	-	5.0	mA
Emitter cut-off current					
$I_{C} = 0; V_{EB} = 5 V$	I _{EBO}	max.	1.0		mA
Breakdown voltages					
$I_C = 200 \ mA; \ I_B = 0$	$V_{CEO(sus)}^*$	min. 40	60	80	V
$I_C = 1 mA; I_E = 0$	VCBO	min. 50	70	90	V
$I_C = 200 \text{ mA}; V_{BE} = 1.5 \text{ V}$	$V_{CEX(sus)}^*$	min. 50	70	90	V
$I_E = 1 mA; I_C = 0$	VEBO	min.	5.0		V
Saturation voltages					
$I_C = 5 A; I_B = 0.5 A$	V_{CEsat}^*	max.	1.3		V
$I_C = 15 A; I_B = 5 A$	V_{CEsat}^*	max.	3.5		V
Base-emitter on voltage					
$I_C = 5 A; V_{CE} = 4 V$	$V_{BE(on)}^*$	max.	1.3		V
$I_C = 15 \; A; \; V_{CE} = 4 \; V$	$V_{BE(on)}^*$	max.	3.5		V
D.C. current gain					
$I_C = 5 A; V_{CE} = 4 V$	h_{FE}^*	min.	20		
		max.	150		
$I_{C} = 15 \; A; \; V_{CE} = 4 \; V$	h_{FE}^*	min.	5.0		
Transition frequency	-412		0.0		
$I_C = 1 A; V_{CE} = 4 V; f = 1 MHz$	$f_{T(1)}$	min.	5.0		MHz
Small signal current gain	-1(1)		0.0		.,
$I_C = 1.0A; V_{CE} = 4V; f = 1.0 \text{ KHz}$	hfe	min.	25		
$10^{-1.011}, 0^{-1.011} = 10^{-1.01112}$	110		~0		

* Pulse test: pulse width \leq 300 µs; duty cycle \leq 2% (1) $f_T = /h_{fe} / \bullet f_{test}$

Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited C-120 Naraina Industrial Area, New Delhi 110 028, India. Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-579 5290, 5141 1119 email@cdil.com www.cdilsemi.com

Data Sheet