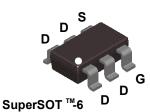
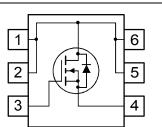
Si3454DV N-Channel PowerTrench[®] MOSFET

General Description


FAIRCHILD SEMICONDUCTOF


These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- 4.2 A, 30 V. $R_{DS(ON)} = 65 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 95 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low gate charge (9.4 nC typical)
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units		
V _{DSS}	Drain-Source	ce Voltage		30	V	
V _{GSS}	Gate-Source	ce Voltage		±20		
I _D	Drain Curren	nt – Continuous (Note 1a)		4.2	A	
		 Pulsed 		20		
P _D	Maximum Po	wer Dissipation	(Note 1a)	1.6	W	
			(Note 1b)	0.8		
		d Storage Junction T	emperature Range	-55 to +150	°C	
Therma	I Charact	eristics				
Therma R _{θJA}	I Charact	eristics istance, Junction-to-A	Ambient (Note 1a)	78	°C/W	
Τ _J , T _{STG} Therma R _{θJA} R _{θJC}	I Charact	eristics	Ambient (Note 1a)			
Therma R _{θJA} R _{θJC}	I Charact Thermal Res	eristics istance, Junction-to-A istance, Junction-to-C	Ambient (Note 1a) Case (Note 1)	78	°C/W	
Therma _{R₀JA} R₀JC Packag	I Charact Thermal Res	eristics istance, Junction-to-A istance, Junction-to-C	Ambient (Note 1a)	78	°C/W	

©2001 Fairchild Semiconductor Corporation

Si3454DV

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		20		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 30 V, V _{GS} = 0 V			1	μA
		V _{DS} = 30 V, V _{GS} = 0 V, T _J =70°C			25	1
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)	•				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1	1.5	2	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		- 4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	V_{GS} = 10 V, I_D = 4.2 A V_{GS} = 4.5 V, I_D = 3.4 A		33 44	65 95	mΩ
I _{D(on)}	On–State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	15			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.2 \text{ A}$		10		S
	Characteristics			L	1	I
C _{iss}	Input Capacitance	$V_{DS} = 15 V, V_{GS} = 0 V,$		460		pF
Coss	Output Capacitance	f = 1.0 MHz		115		pF
C _{rss}	Reverse Transfer Capacitance	-		45		pF
	g Characteristics (Note 2)			1	1	
t _{d(on)}	Turn–On Delay Time	V _{DS} = 15 V, I _D = 1 A,		5	20	nS
t _r	Turn–On Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		8	30	nS
t _{d(off)}	Turn–Off Delay Time	4		17	35	nS
t _f	Turn–Off Fall Time	1		13	20	nS
t _{rr}	Source-Drain Reverse Recovery Time	I _F = 1.7 A, di/dt = 100 A/uS			80	nS
Qg	Total Gate Charge	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.2 \text{ A},$		9.4	15	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = 10 V$		1.2		nC
Q _{gd}	Gate–Drain Charge	7		1.1		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain–Sourc	v			1.7	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 1.7 A$ (Note 2)			1.2	V

Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. $~78^\circ\text{C/W}$ when mounted on a 1in^2 pad of 2oz copper on FR-4 board.

b. 156°C/W when mounted on a minimum pad.

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

Typical Characteristics	Si3454DV	
Figure 1. On-Region Characteristics.	Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.	
Figure 3. On-Resistance Variation withTemperature.	Figure 4. On-Resistance Variation with Gate-to-Source Voltage.	
Figure 5. Transfer Characteristics.	Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.	

Typical Characteristics	
Figure 7. Gate Charge Characteristics.	Figure 8. Capacitance Characteristics.
Figure 9. Maximum Safe Operating Area.	Figure 10. Single Pulse Maximum Power Dissipation.
Figure 11. Transient Therma Thermal characterization performed us Transient thermal response will chang	Il Response Curve. sing the conditions described in Note 1c. e depending on the circuit board design.
	a appending on the circuit board design.

Si3454DV

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production