

Dual Differential Comparators

LM393

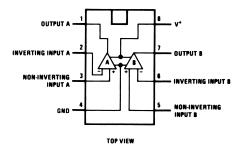
General Description

The LM393 consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM393 was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the WS393MX ■ Differential input voltage range equal to the power will directly interface with MOS logic where their low power drain is a distinct advantage over standard compara-

Advantages

■ High precision comparators


- Reduced V_{OS} drift over temperature
- Eliminates need for dual supplies
- Allows sensing near ground
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide supply
 - 2.0V to 36V — Voltage range: — single or dual supplies: ±1.0V to ±18V
- Very low supply current drain (0.4 mA) independent of supply voltage
- Low input biasing current: 25 nA
- Low input offset current: ±5 nA Maximum offset voltage: ±9m V
- Input common-mode voltage range includes ground
- supply voltage
- 150 mV at 4 mA ■ Low output saturation voltage,:
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Pin Configuration

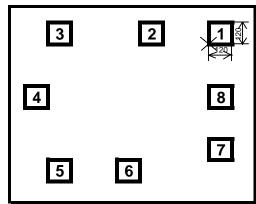
LM393N DIP-8 SOP-8 LM393M

electrical characteristics at specified free-air temperature, Vcc = 4 V (unless otherwise noted)

PARAMETER	TEST CONDIT		ΓΙΟΝS	MIN	TYP	MAX	UNIT
V ₁₀ input offset voltage	Vcc = 3	5V to 30V	25°C		2	5	mV
	$V_{IC} = V$	ICR min,	Full range			9	
	Vo =1.	4V					
${ m I_{IO}}$	Vo =1.	4V	25°C		5	50	nA
input offset current			Full range			150	
$ m I_{IB}$	Vo =1.	4V	25°C		-25	-250	nA
input bias current			Full range			-400	
V_{1CR}			25°C	0 to Vcc-1.5			V
Common-mode input voltage			Full range	0 to Vcc-2.0			
range**							
A_{VD}	Vcc = 1	15V	25°C	50	200		V/m V
Large-signal differential	Vo =1.	4Vto 11.4V					
voltage amplication		kΩto Vcc					
Іон	V _{OH} =5	$5V,V_{ID}=1V$	25°C		0.1	50	nA
High-level output current	Vон=3	$0V,V_{ID}=1V$	Full range			1	u A
V_{OL}	IoL=4mA,VID=1V		25°C		150	400	mV
Low-level output voltage			Full range			700	
Iol	$V_{OL}=1.5V, V_{ID}=1V$		25°C	6			m A
Low-level output current							
Icc	RL=∝	Vcc=5V	25°C		0.8	1	m A
Supply current		Vcc=30V	Full range			2.5	

^{*}Full range(MIN to MAX),for the LM393 is 0 °C to 70 °C.All characteristics are measured with zero common-mode input voltage unless otherwise speified.

switching characteristics ,Vcc=5V,Ta=25°C

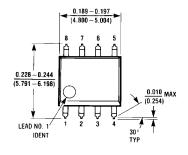

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Response time	RL connected to 5V	100mV input step with		1.3		us
	through 5.1K	5-m V overdrive				
	CL=15pF see Note1	TTL-level input step		0.3		

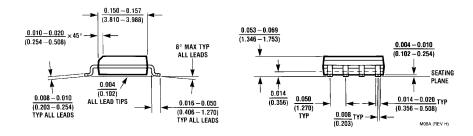
^{*} CL includes probe and jig capacitance

NOTE1: The response time specified is the interval between the input step function and the instant when the output crosses 1.4V.

^{**}The voltage at either input or common-mode should not be go negative by more than 0.3V. The upper end of the common-mode voltage range is Vcc+-1.5V, but either or both inputs can go to 30V without damage

PAD LOCATION




Chip size 1.3mm x 1.2mm

Pad N Pad Name		Coordinates mkm				
		X	Y			
1	#1 OUT	1074	919			
2	#1 IN-	646	967			
3	#1 IN+	240	967			
4	GND	100	534			
5	#2 IN+	240	100			
6	#2 IN-	646	100			
7	#2 OUT	1074	148			
8	V _{CC} .	1074	530			

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

