DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT40102 8-bit synchronous BCD down counter

Product specification
File under Integrated Circuits, IC06

FEATURES

- Cascadable
- Synchronous or asynchronous preset
- Output capability: standard
- ICC category: MSI

GENERAL DESCRIPTION

The 74HC/HCT40102 are high-speed Si-gate CMOS devices and are pin compatible with the "40102" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 40102$ consist each of an 8 -bit synchronous down counter with a single output which is active when the internal count is zero. The " 40102 " is configured as two cascaded 4-bit BCD counters and has control inputs for enabling or disabling the clock (CP), for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the terminal count output ($\overline{\mathrm{TC}}$) are active-LOW logic.

In normal operation, the counter is decremented by one count on each positive-going transition of the clock (CP). Counting is inhibited when the terminal enable input (TE) is HIGH. The terminal count output ($\overline{\mathrm{TC}}$) goes LOW when the count reaches zero if TE is LOW, and remains LOW for one full clock period.

When the synchronous preset enable input ($\overline{\mathrm{PE}}$) is LOW, data at the jam input (P_{0} to P_{7}) is clocked into the counter on the next positive-going clock transition regardless of the state of $\overline{T E}$. When the asynchronous preset enable input $(\overline{\mathrm{PL}})$ is LOW, data at the jam input (P_{0} to P_{7}) is asynchronously forced into the counter regardless of the state of $\overline{P E}, \mathrm{TE}$, or CP. The jam inputs (P_{0} to P_{7}) represent two 4-bit BCD words.
When the master reset input ($\overline{\mathrm{MR}}$) is LOW, the counter is asynchronously cleared to its maximum count (decimal 99) regardless of the state of any other input. The precedence relationship between control inputs is indicated in the function table.

If all control inputs except $\overline{T E}$ are HIGH at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 100 clock pulses long.
The " 40102 " may be cascaded using the TE input and the $\overline{\mathrm{TC}}$ output, in either a synchronous or ripple mode.

APPLICATIONS

- Divide-by-n counters
- Programmable timers
- Interrupt timers
- Cycle/program counters

QUICK REFERENCE DATA
GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	30	31
			ns		
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to $\overline{\mathrm{TC}}$		30	MHz	
$\mathrm{f}_{\text {max }}$	maximum clock frequency		3.5	3.5	pF
C_{I}	input capacitance		20	25	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per package	notes 1 and 2			

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):

$$
\begin{aligned}
& \quad P_{D}=C_{P D} \times V_{C C^{2}} \times f_{i}+\sum\left(C_{L} \times V_{C C^{2}} \times f_{o}\right) \text { where: } \\
& f_{i}=\text { input frequency in } \mathrm{MHz} \\
& f_{0}=\text { output frequency in } \mathrm{MHz} \\
& \sum\left(C_{L} \times V_{C C^{2}} \times f_{0}\right)=\text { sum of outputs } \\
& C_{L}=\text { output load capacitance in } \mathrm{pF} \\
& V_{C C}=\text { supply voltage in } V
\end{aligned}
$$

2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	$\overline{\mathrm{CP}}$	clock input (LOW-to-HIGH, edge-triggered)
2	$\overline{\mathrm{MR}}$	asynchronous master reset input (active LOW)
3	$\overline{\mathrm{TE}}$	terminal enable input
$4,5,6,7,10,11,12,13$	P_{0} to P_{7}	jam inputs
8	GND	ground (0 V)
9	$\overline{\mathrm{PL}}$	asynchronous preset enable input (active LOW)
14	$\overline{\mathrm{TC}}$	terminal count output (active LOW)
15	$\overline{\mathrm{PE}}$	synchronous preset enable input (active LOW)
16	V	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Fig. 4 Functional diagram.

FUNCTION TABLE

CONTROL INPUTS				PRESET MODE	ACTION
$\overline{\mathbf{M R}}$	$\overline{\text { PL }}$	$\overline{\text { PE }}$	$\overline{\text { TE }}$		
H	H	H	H	synchronous	inhibit counter
H	H	H	L		
H	H	L	X		preset on next LOW-to HIGH clock transition
H	L	X	X	asynchronous	preset asynchronously
L	X	X	X		clear to maximum count

Notes

1. Clock connected to CP.
2. Synchronous operation: changes occur on the LOW-to-HIGH CP transition.
3. Jam inputs: $M S D=P_{7}, L S D=P_{0}$.
$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
X = don't care

Fig. 5 Logic diagram.

Fig. 6 Timing diagram.

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard I CC category: MSI

AC CHARACTERISTICS FOR 74HC
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\text {C }}$)							UNIT	TEST CONDITIONS	
		74HC								$V_{C c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to $\overline{T C}$		$\begin{aligned} & 96 \\ & 35 \\ & 28 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 60 \\ & 51 \end{aligned}$		$\begin{aligned} & 375 \\ & 75 \\ & 64 \end{aligned}$		$\begin{aligned} & \hline 450 \\ & 90 \\ & 77 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{TE}}$ to $\overline{\mathrm{TC}}$		$\begin{array}{\|l\|} \hline 50 \\ 18 \\ 14 \end{array}$	$\begin{array}{\|l\|} \hline 200 \\ 40 \\ 34 \end{array}$		$\begin{aligned} & \hline 250 \\ & 50 \\ & 43 \end{aligned}$		$\begin{aligned} & \hline 300 \\ & 60 \\ & 51 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $P_{n}, \overline{P L}$ to $\overline{T C}$		$\begin{aligned} & 110 \\ & 40 \\ & 32 \end{aligned}$	$\begin{array}{\|l\|} \hline 240 \\ 68 \\ 58 \end{array}$		$\begin{aligned} & \hline 425 \\ & 85 \\ & 72 \end{aligned}$		$\begin{array}{\|l} \hline 510 \\ 102 \\ 87 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
$\mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{MR}}$ to $\overline{\mathrm{TC}}$		$\begin{aligned} & 83 \\ & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 275 \\ & 55 \\ & 47 \end{aligned}$		$\begin{array}{\|l} \hline 345 \\ 69 \\ 59 \end{array}$		$\begin{aligned} & 415 \\ & 83 \\ & 71 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		9 7 6	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Figs 8 and 8
tw	clock pulse width HIGH or LOW	$\begin{aligned} & \hline 165 \\ & 33 \\ & 28 \end{aligned}$	$\begin{array}{\|l\|} \hline 22 \\ 8 \\ 6 \\ \hline \end{array}$		$\begin{aligned} & 205 \\ & 41 \\ & 35 \end{aligned}$		$\begin{aligned} & \hline 250 \\ & 50 \\ & 43 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
tw	master reset pulse width LOW	$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 11 \\ 9 \end{array}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 33 \end{array}$		$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
tw	preset enable pulse width PL; LOW	$\begin{array}{\|l\|} \hline 125 \\ 25 \\ 21 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 39 \\ 14 \\ 11 \end{array}$		$\begin{array}{\|l\|} \hline 155 \\ 31 \\ 26 \end{array}$		$\begin{array}{\|l} \hline 190 \\ 38 \\ 32 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 8
trem	removal time $\overline{\mathrm{PL}} ; \overline{\mathrm{MR}}$ to CP	$\begin{aligned} & \hline 50 \\ & 10 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 3 \\ & 2 \end{aligned}$		$\begin{aligned} & 65 \\ & 13 \\ & 11 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
$t_{\text {su }}$	set-up time $\overline{P E}$ to $C P$	$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 36 \\ & 13 \\ & 10 \end{aligned}$		$\begin{array}{\|l} \hline 125 \\ 25 \\ 21 \end{array}$		$\begin{array}{\|l} \hline 150 \\ 30 \\ 26 \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 8
$\mathrm{t}_{\text {su }}$	set-up time TE to CP	$\begin{array}{\|l\|} \hline 175 \\ 35 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & \hline 50 \\ & 18 \\ & 14 \end{aligned}$		$\begin{aligned} & \hline 220 \\ & 44 \\ & 37 \end{aligned}$		$\begin{aligned} & \hline 265 \\ & 53 \\ & 45 \\ & \hline \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								$V_{c c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {su }}$	set-up time P_{n} to CP	$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 33 \\ & 12 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 8
t_{h}	hold time $\overline{\mathrm{PE}}$ to CP	$\begin{array}{\|l} \hline 2 \\ 2 \\ 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-8 \\ -3 \\ -2 \\ \hline \end{array}$		2 2		2 2 2		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 8
$t_{\text {h }}$	hold time $\overline{\mathrm{TE}}$ to CP	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} \hline-41 \\ -15 \\ -12 \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
t_{h}	hold time P_{n} to $C P$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \\ & -5 \end{aligned}$		2 2 2		2 2 2		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	$\begin{array}{\|l\|} \hline 3 \\ 15 \\ 18 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8.9 \\ 27 \\ 32 \\ \hline \end{array}$		2 12 14		2 10 12		MHz	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 8

8-bit synchronous BCD down counter

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
$I_{\text {CC }}$ category: MSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta l_{\mathrm{CC}}\right)$ for a unit load of 1 is given in the family specifications. To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\frac{\mathrm{CP}, \overline{\mathrm{PE}}}{}$	1.50
$\overline{\mathrm{MR}}$	1.00
$\overline{\mathrm{TE}}$	0.80
$\frac{\mathrm{P}_{\mathrm{n}}}{\mathrm{PL}}$	0.25

AC CHARACTERISTICS FOR 74HCT
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS	
		74HCT								$\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{tPHL} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{P}_{\mathrm{n}} ; \mathrm{CP}$ to $\overline{\mathrm{TC}}$		38	63		79		95	ns	4.5	Figs 8 and 8
tPhL/ ${ }_{\text {PLH }}$	propagation delay $\overline{T E}$ to $\overline{T C}$		25	50		63		75	ns	4.5	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { propagation delay } \\ & \text { PL to } \overline{\mathrm{TC}} \\ & \hline \end{aligned}$		49	83		104		125	ns	4.5	Fig. 8
tPLH	$\begin{aligned} & \text { propagation delay } \\ & \text { MR to TC } \end{aligned}$		31	55		69		83	ns	4.5	Fig. 8
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TL }}$	output transition time		7	15		19		22	ns	4.5	Figs 8 and 8
$\mathrm{t}_{\text {w }}$	clock pulse width HIGH or LOW	33	11		41		50		ns	4.5	Fig. 8
$\mathrm{t}_{\text {w }}$	master reset pulse width LOW	30	16		38		45		ns	4.5	Fig. 8
t_{w}	preset enable pulse width PL; LOW	43	25		54		65		ns	4.5	Fig. 8
$\mathrm{t}_{\text {rem }}$	removal time $\overline{\mathrm{PL}} ; \overline{\mathrm{MR}}$ to CP	10	1		13		15		ns	4.5	Fig. 8
$\mathrm{t}_{\text {su }}$	set-up time $\overline{\mathrm{PE}}$ to CP	20	10		25		30		ns	4.5	Fig. 8
$\mathrm{t}_{\text {su }}$	set-up time TE to CP	40	20		50		60		ns	4.5	Fig. 8
$\mathrm{t}_{\text {su }}$	set-up time P_{n} to CP	20	12		25		30		ns	4.5	Fig. 8
th_{n}	$\begin{aligned} & \text { hold time } \\ & \text { PE to } \mathrm{CP} \end{aligned}$	0	-4		0		0		ns	4.5	Fig. 8
th_{n}	$\begin{aligned} & \text { hold time } \\ & \overline{\mathrm{TE}} \text { to } \mathrm{CP} \end{aligned}$	0	-15		0		0		ns	4.5	Fig. 8
th_{n}	$\begin{array}{\|c\|} \hline \text { hold time } \\ \mathrm{P}_{\mathrm{n}} \text { to } \mathrm{CP} \\ \hline \end{array}$	0	-6		0		0		ns	4.5	Fig. 8
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	15	27		12		10		MHz	4.5	Fig. 8

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 9 Waveforms showing $\overline{\mathrm{PL}}, \overline{\mathrm{MR}}, \mathrm{P}_{\mathrm{n}}$ to $\overline{T C}$ propagation delays.

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 8 Waveforms showing the $\overline{T E}$ to $\overline{\mathrm{TC}}$ propagation delays.

The shaded areas indicate when the input is permitted to change for predictable output performance.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=$ GND to V_{Cc}.
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .
Fig. 12 Waveforms showing hold and set-up times for $P_{n}, \overline{P E}$ to $C P$.

APPLICATION INFORMATION

Fig. 13 Programmable timer.

Fig. 14 Divide-by-N counter.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

