DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT7404 5-Bit x 64-word FIFO register; 3-state

Product specification
Supersedes data of October 1990
File under Integrated Circuits, IC06

FEATURES

- Synchronous or asynchronous operation
- 3-state outputs
- 30 MHz (typical) shift-in and shift-out rates
- Readily expandable in word and bit dimensions
- Pinning arranged for easy board layout: input pins directly opposite output pins
- Output capability: driver (8 mA)
- ICC category: LSI.

APPLICATIONS

- High-speed disc or tape controller
- Communications buffer.

GENERAL DESCRIPTION

The 74HC/HCT7404 are high-speed Si-gate CMOS devices specified in compliance with JEDEC standard no.7A.

The "7404" is an expandable, First-In First-Out (FIFO) memory organized as 64 words by 5 bits. A guaranteed 15 MHz data-rate makes it ideal for high-speed applications. A higher data-rate can be obtained in applications where the status flags are not used (burst-mode).
With separate controls for shift-in (SI) and shift-out ($\overline{\mathrm{SO}}$), reading and writing operations are completely independent, allowing synchronous and asynchronous data transfers. Additional controls include a master-reset input ($\overline{\mathrm{MR}}$), an output enable input $(\overline{\mathrm{OE}})$ and flags. The data-in-ready (DIR) and data-out-ready (DOR) flags indicate the status of the device.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYP.		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\text { SO}}$, SI to DIR and DOR	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	15	17	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency		30	30	MHz
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per package	note 1	475	490	pF

Note

1. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.

ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
$74 \mathrm{HC} / \mathrm{HCT} 7404 \mathrm{~N}$	18	DIL	plastic	SOT102
$74 \mathrm{HC} / \mathrm{HCT} 7404 \mathrm{D}$	20	SO20	plastic	SOT163A

PINNING (SOT102)

SYMBOL	PIN	DESCRIPTION
$\overline{\text { OE }}$	1	output enable input (active LOW)
DIR	2	data-in-ready output
SI	3	shift-in input (active HIGH)
D_{O} to D_{4}	$4,5,6,7,8$	parallel data inputs
GND	9	ground
$\overline{\text { MR }}$	10	asynchronous master-reset input (active LOW)
Q $_{4}$ to Q_{0}	$11,12,13$, 14,15	data outputs
DOR	16	data-out-ready output
$\overline{\text { SO }}$	17	shift-out input (active LOW)
V $_{\text {CC }}$	18	positive supply voltage

PINNING (SOT163A)

Fig. 1 Pin configuration (SOT102).

SYMBOL	PIN	DESCRIPTION
$\overline{\text { OE }}$	1	output enable input (active LOW)
DIR	2	data-in-ready output
SI	3	shift-in input (active HIGH)
n.c.	4	not connected
D_{0} to D_{4}	$5,6,7,8,9$	parallel data inputs
GND	10	ground
$\overline{\text { MR }}$	11	asynchronous master-reset input (active LOW)
Q $_{4}$ to Q_{0}	$12,13,14$,	data outputs
n.c.	15,16	not connected
DOR	18	data-out ready output
n.c.	19	not connected
$V_{C C}$	20	positive supply voltage

Fig. 2 Pin configuration (SOT163).

Fig. 3 Logic symbol.

Pin numbers between parentheses refer to the SO package.
Fig. 4 IEC logic symbol.

Pin numbers between parentheses refer to the SO package.
Fig. 5 Functional diagram.

FUNCTIONAL DESCRIPTION

The DIR flag indicates the input stage status, either empty and ready to receive data (DIR $=$ HIGH) or full and busy (DIR = LOW). When DIR and SI are HIGH, data present at D_{0} to D_{4} is shifted into the input stage; once complete DIR goes LOW. When SI is set LOW, data is automatically shifted to the output stage or to the last empty location. A FIFO which can receive data is indicated by DIR set HIGH.

A DOR flag indicates the output stage status, either data available
(DOR = HIGH) or busy
(DOR = LOW). When SO and DOR are HIGH, data is available at the
outputs $\left(Q_{0}\right.$ to $\left.Q_{4}\right)$. When $\overline{\mathrm{SO}}$ is LOW new data may be shifted into the output stage, once complete DOR is set LOW.

Expanded Format (see Fig.18)

The DOR and DIR signals are used to allow the ' 7404 ' to be cascaded. Both parallel and serial expansion is possible. Serial expansion is only possible with typical devices.

Parallel Expansion

Parallel expansion is accomplished by logically ANDing the DOR and DIR signals to form a composite signal.

Serial Expansion

Serial expansion is accomplished by:

- tying the data outputs of the first device to the data inputs of the second device
- connecting the DOR pin of the first device to the SI pin of the second device
- connecting the $\overline{\mathrm{SO}}$ pin of the first device to the DIR pin of the second device.

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: parallel outputs, bus driver; serial output, standard ICC category: MSI
Output capability: driver 8 mA
ICC category: LSI
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

DC CHARACTERISTICS FOR 74HC

SYMBOL	PARAMETER	$\mathrm{Tamb}{ }^{\circ} \mathbf{C}$							UNIT	TEST CONDITION		
		+25			-40 to +85		-40 to +125			$V_{\text {Cc }}$ (V)	V_{1}	OTHER
		MIN	TYP	MAX	MIN	MAX	MIN	MAX				
V_{OH}	HIGH level output voltage	$\begin{array}{\|l\|} 3.98 \\ 5.48 \end{array}$	$\begin{aligned} & 4.32 \\ & 5.81 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 3.70 \\ & 5.20 \end{aligned}$	$-$	$\begin{array}{\|l} \hline \mathrm{V} \\ \mathrm{~V} \end{array}$	$\begin{aligned} & 4.5 \\ & 6 \end{aligned}$	V_{IH} or $V_{I L}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA} \end{aligned}$
V_{OL}	LOW level output voltage	-	$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	-	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\mid-$	$\begin{aligned} & \hline 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 6 \end{aligned}$	V_{IH} or V_{IL}	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \end{aligned}$

AC CHARACTERISTICS FOR 74HC

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

SYMBOL	PARAMETER	$\mathrm{Tamb}^{\circ} \mathrm{C}$							UNIT	TEST CONDITION	
		+25			-40 to +85		-40 to +125				WAVEFORMS
		MIN	TYP	MAX	MIN	MAX	MIN	MAX		(V)	WAvEFORMS
tPHL/tPLH	propagation delay $\overline{\mathrm{MR}}$ to DIR, DOR	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 69 \\ & 25 \\ & 20 \end{aligned}$	$\begin{array}{\|l\|} \hline 210 \\ 42 \\ 36 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 315 \\ 63 \\ 54 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 9
$\mathrm{t}_{\text {PHL }}$	propagation delay $\overline{\mathrm{MR}}$ to Q_{n}	$\begin{array}{\|l} \hline- \\ - \\ - \end{array}$	$\begin{aligned} & \hline 52 \\ & 19 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|} \hline 160 \\ 32 \\ 27 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 40 \\ 34 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 240 \\ 48 \\ 41 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 9
$\mathrm{t}_{\text {PHL }} / \mathrm{tPLH}$	propagation delay SI to DIR	$\begin{array}{\|l} - \\ - \\ - \\ \hline \end{array}$	$\begin{aligned} & \hline 66 \\ & 24 \\ & 19 \end{aligned}$	$\begin{array}{\|l\|} \hline 205 \\ 41 \\ 35 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} \hline 255 \\ 51 \\ 43 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 310 \\ 62 \\ 53 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{SO}}$ to DOR	$\begin{array}{\|l} - \\ - \\ - \\ \hline \end{array}$	$\begin{aligned} & \hline 94 \\ & 34 \\ & 27 \end{aligned}$	$\begin{array}{\|l\|} \hline 290 \\ 58 \\ 49 \\ \hline \end{array}$	$\begin{array}{\|l} - \\ - \\ \hline- \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 365 \\ 73 \\ 62 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 435 \\ 87 \\ 74 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { ns } \\ \text { ns } \\ \text { ns } \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 10
tphl/tplh	propagation delay DOR to Q_{n}	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 11 \\ 4 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 35 \\ 7 \\ 6.0 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 45 \\ 9 \\ 8 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 55 \\ 11 \\ 9 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { ns } \\ \text { ns } \\ \text { ns } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 11
tPHL/t ${ }_{\text {PLH }}$	propagation delay $\overline{\mathrm{SO}}$ to Q_{n}	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 105 \\ 38 \\ 30 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 325 \\ 65 \\ 55 \\ \hline \end{array}$	$\begin{array}{\|l} - \\ - \\ - \\ \hline \end{array}$	$\begin{aligned} & \hline 406 \\ & 81 \\ & 69 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 488 \\ 98 \\ 83 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ns } \\ \text { ns } \\ \text { ns } \end{array}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Fig. 15
tplh	propagation delay/ripple through delay SI to DOR	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 2.2 \\ & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 1.4 \\ & 1.2 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 8.8 \\ & 1.8 \\ & 1.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & \hline 10.5 \\ & 2.1 \\ & 1.8 \end{aligned}$	$\begin{array}{\|l} \hline \mu \mathrm{S} \\ \mu \mathrm{~S} \\ \mu \mathrm{~S} \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 16
tply	propagation delay/bubble-up delay $\overline{\mathrm{SO}}$ to DIR		$\begin{aligned} & 2.8 \\ & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 1.8 \\ & 1.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 11.2 \\ 2.2 \\ 1.9 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 13.5 \\ 2.7 \\ 2.3 \end{array}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
tpzh/tpzL	3-state output enable $\overline{\mathrm{OE}}$ to Q_{n}		$\begin{array}{\|l} \hline 44 \\ 16 \\ 13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 32 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 225 \\ 45 \\ 38 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 17
$\mathrm{t}_{\text {PHZ }} / \mathrm{tPLZ}$	3-state output disable $\overline{O E}$ to Q_{n}	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 50 \\ & 18 \\ & 14 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|l\|} \hline 190 \\ 38 \\ 33 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{\|l} \hline 225 \\ 45 \\ 38 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { ns } \\ \text { ns } \\ \text { ns } \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Fig. 17
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 5 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{\|l} - \\ - \\ \hline- \\ \hline \end{array}$	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline 90 \\ 18 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { ns } \\ \text { ns } \\ \text { ns } \end{array}$	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 17
tw	SI pulse width HIGH or LOW	$\begin{array}{\|l\|} \hline 35 \\ 7 \\ \hline 6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ 4 \\ 3 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & \hline 45 \\ & 9 \\ & 8 \end{aligned}$	$\left.\right\|_{-} ^{-}$	$\begin{array}{\|l\|} \hline 55 \\ 11 \\ 9 \end{array}$	$-$	$\begin{array}{\|l\|} \hline \text { ns } \\ \text { ns } \\ \text { ns } \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Fig. 7
tw	$\overline{\mathrm{SO}}$ pulse width HIGH or LOW	$\begin{aligned} & \hline 70 \\ & 14 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 22 \\ 8 \\ 6 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 90 \\ 18 \\ 15 \end{array}$	$\left.\right\|_{-} ^{-}$	$\begin{array}{\|l\|} \hline 105 \\ 21 \\ 18 \\ \hline \end{array}$	$\left.\right\|_{-} ^{-}$	$\begin{array}{\|l\|} \hline \text { ns } \\ \text { ns } \\ \text { ns } \end{array}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Fig. 10

SYMBOL	PARAMETER	Tamb ${ }^{\circ} \mathrm{C}$							UNIT	TEST CONDITION	
		+25			-40 to +85		-40 to +125				
		MIN	TYP	MAX	MIN	MAX	MIN	MAX		(V)	
tw	DIR pulse width HIGH	$\begin{aligned} & \hline 10 \\ & 5 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 15 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 130 \\ 26 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ 4 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 165 \\ 33 \\ 28 \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ 4 \\ 3 \end{array}$	$\begin{aligned} & \hline 195 \\ & 39 \\ & 33 \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { ns } \\ \text { ns } \\ \text { ns } \end{array} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
tw	DOR pulse width HIGH	$\begin{aligned} & \hline 14 \\ & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 52 \\ & 19 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|} \hline 160 \\ 32 \\ 27 \end{array}$	$\begin{aligned} & \hline 12 \\ & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 200 \\ & 40 \\ & 34 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 6 \\ & 5 \end{aligned}$	$\begin{array}{\|l} \hline 240 \\ 48 \\ 41 \end{array}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 11
tw	$\overline{\mathrm{MR}}$ pulse width LOW	$\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 39 \\ 14 \\ 11 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \\ & \hline \end{aligned}$	$-$	$\begin{array}{\|l\|} \hline 180 \\ 36 \\ 31 \end{array}$		$\begin{array}{\|l\|l} \hline \text { ns } \\ \text { ns } \\ \text { ns } \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Fig. 9
trem	removal time $\overline{\mathrm{MR}}$ to SI	$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{array}{\|l\|} \hline 24 \\ 8 \\ 7 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \end{array}$		$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 16
$\mathrm{t}_{\text {su }}$	set-up time D_{n} to SI	$\begin{array}{\|l\|} \hline-8 \\ -4 \\ -3 \end{array}$	$\begin{array}{\|l} \hline-36 \\ -13 \\ -10 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline-6 \\ -3 \\ -3 \end{array}$	$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$	$\begin{array}{\|l\|} \hline-6 \\ -3 \\ -3 \end{array}$	l_{-}^{-}	$\begin{array}{\|l\|} \hline \text { ns } \\ \text { ns } \\ \text { ns } \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 14
t_{h}	hold time D_{n} to SI	$\begin{array}{\|l\|} \hline 135 \\ 27 \\ 23 \end{array}$	$\begin{aligned} & \hline 44 \\ & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 34 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 205 \\ 41 \\ 35 \end{array}$		$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 14
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\text { SO }}$ burst mode	$\begin{array}{\|l} \hline 3.6 \\ 18 \\ 21 \end{array}$	$\begin{aligned} & 9.9 \\ & 30 \\ & 36 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & \hline 2.8 \\ & 14 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 2.4 \\ & 12 \\ & 14 \end{aligned}$		$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 12 and Fig. 13
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency $\mathrm{SI}, \overline{\mathrm{SO}}$ using flags	$\begin{aligned} & \hline 3.6 \\ & 18 \\ & 21 \end{aligned}$	$\begin{aligned} & 9.9 \\ & 30 \\ & 36 \end{aligned}$		$\begin{array}{\|l} \hline 2.8 \\ 14 \\ 16 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 12 \\ & 14 \end{aligned}$		$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7 and Fig. 10
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\text { SO }}$ cascaded		$\begin{aligned} & \hline 7.6 \\ & 23 \\ & 27 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline- \\ - \\ - \end{array}$			-	$\begin{array}{\|l\|l} \hline \mathrm{MHz} \\ \mathrm{MHz} \\ \mathrm{MHz} \end{array}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7 and Fig. 10

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications", except that V_{OH} and V_{OL} are not valid for driver output. They are replaced by the values given below.

Output capability: driver 8 mA
ICC category: LSI.
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

DC CHARACTERISTICS FOR 74HCT

SYMBOL	PARAMETER	$\mathrm{Tamb}{ }^{\circ} \mathrm{C}$							UNIT	TEST CONDITION		
		+25			-40 to +85		-40 to +125			$V_{\text {Cc }}$ (V)	$\mathrm{V}_{\mathbf{I}}$	OTHER
		MIN	TYP	MAX	MIN	MAX	MIN	MAX				
V_{OH}	HIGH level output voltage	3.98	4.32	-	3.84	-	3.7	-	V	4.5	V_{IH} or $V_{I L}$	$\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$
V_{OL}	LOW level output voltage	-	0.15	0.26	-	0.33	-	0.40	V	4.5	V_{IH} or $\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{0}=8 \mathrm{~mA}$

Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications.
To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

UNIT LOAD COEFFICIENT

INPUT	UNIT LOAD COEFFICIENT
$\overline{\mathrm{OE}}$	1
SI	1.5
D_{n}	0.75
$\overline{\mathrm{MR}}$	1.5
$\overline{\mathrm{SO}}$	1.5

AC CHARACTERISTICS FOR 74HCT

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

SYMBOL	PARAMETER	$\mathrm{Tamb}^{\circ} \mathrm{C}$							UNIT	TEST CONDITION	
		+25			-40 to +85		-40 to +125			V_{cc}	WAVEFORMS
		MIN	TYP	MAX	MIN	MAX	MIN	MAX		(V)	WAvEFOMS
tPhL/tpLH	propagation delay $\overline{\mathrm{MR}}$ to DIR, DOR	-	30	51	-	53	-	63	ns	4.5	Fig. 9
$\mathrm{t}_{\text {PHL }}$	propagation delay $\overline{M R}$ to Q_{n}	-	22	38	-	48	-	57	ns	4.5	Fig. 9
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PL }}$	propagation delay SI to DIR	-	25	43	-	54	-	65	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PL }}$	propagation delay $\overline{\mathrm{SO}}$ to DOR	-	36	61	-	76	-	92	ns	4.5	Fig. 10
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PL }}$	propagation delay $\overline{\mathrm{SO}}$ to Q_{n}	-	42	72	-	90	-	108	ns	4.5	Fig. 15
tPHL/tPLH	propagation delay DOR to Q_{n}	-	7	12	-	15	-	18	ns	4.5	Fig. 11
tpLH	propagation delay/ripple through delay SI to DOR	-	0.8	1.4	-	1.75	-	2.1	$\mu \mathrm{s}$	4.5	Fig. 11
tpLH	propagation delay/bubbleup delay $\overline{\text { SO }}$ to DIR	-	1	1.8	-	2.25	-	2.7	$\mu \mathrm{s}$	4.5	Fig. 8
tpzH $/$ tpzL	3-state output enable $\overline{\mathrm{OE}}$ to Q_{n}	-	16	30	-	38	-	45	ns	4.5	Fig. 17
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable $\overline{O E}$ to Q_{n}	-	19	30	-	38	-	45	ns	4.5	Fig. 17
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time	-	5	12	-	15	-	18	ns	4.5	Fig. 17
tw	SI pulse width HIGH or LOW	9	5	-	6	-	8	-	ns	4.5	Fig. 7
tw	$\overline{\mathrm{SO}}$ pulse width HIGH or LOW	14	8	-	18	-	21	-	ns	4.5	Fig. 10
tw	DIR pulse width HIGH	5	17	29	4	36	4	44	ns	4.5	Fig. 8

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}{ }^{\circ} \mathrm{C}$							UNIT	TEST CONDITION	
		+25			-40 to +85		-40 to +125			$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	WAVEFORMS
		MIN	TYP	MAX	MIN	MAX	MIN	MAX			
tw	DOR pulse width HIGH	7	21	36	6	45	6	54	ns	4.5	Fig. 11
t_{w}	$\overline{\mathrm{MR}}$ pulse width LOW	26	15	-	33	-	39	-	ns	4.5	Fig. 9
trem	removal time $\overline{\mathrm{MR}}$ to SI	18	10	-	23	-	27	-	ns	4.5	Fig. 16
$\mathrm{t}_{\text {su }}$	set-up time D_{n} to SI	-5	-16	-	-4	-	-4	-	ns	4.5	Fig. 14
th	hold time D_{n} to SI	30	18	-	38	-	45	-	ns	45	Fig. 14
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\text { SO }}$ burst mode	18	30	-	14	-	12	-	MHz	4.5	Fig. 12 and Fig. 13
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, SO using flags	18	30	-	14	-	12	-	MHz	4.5	Fig. 7 and Fig. 10
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, SO cascaded	-	23	-	-	-	-	-	MHz	4.5	Fig. 7 and Fig. 10

AC WAVEFORMS

Shifting in sequence FIFO empty to FIFO full

(1) HC : $\mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 7 Waveforms showing the SI input to DIR output propagation delay, the SI pulse width and SI maximum pulse frequency.

Notes to Fig. 7

1. DIR initially HIGH; FIFO is prepared for valid data
2. SI set HIGH; data loaded into input stage
3. DIR goes LOW, input stage "busy"
4. SI set LOW; data from first location "ripple through"
5. DIR goes HIGH, status flag indicates FIFO prepared for additional data
6. Repeat process to load 2nd word through to 64th word into FIFO

DIR remains LOW; with attempt to shift into full FIFO, no data transfer occurs.

With FIFO full; SI held HIGH in anticipation of empty location

(1) HC : $\mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 8 Waveforms showing bubble-up delay, $\overline{\text { SO }}$ input to DIR output and DIR output pulse width.

Notes to Fig. 8

1. FIFO is initially full, shift-in is held HIGH
2. $\overline{\text { SO }}$ pulse; data in the output stage is unloaded, "bubble-up" process of empty location begins
3. DIR HIGH; when empty location reaches input stage, flag indicates FIFO is prepared for data input
4. DIR returns to LOW; data shift-in to empty location is complete, FIFO is full again
5. SI set LOW; necessary to complete shift-in process, DIR remains LOW, because FIFO is full.

Master reset applied with FIFO full

(1) HC : $\mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. HCT : $V_{M}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 9 Waveforms showing the $\overline{\mathrm{MR}}$ input to DIR , DOR and Q_{n} output propagation delays and the $\overline{\mathrm{MR}}$ pulse width.

Notes to Fig. 9

1. DIR LOW, output ready HIGH; assume FIFO is full
2. $\overline{\mathrm{MR}}$ pulse LOW; clears FIFO
3. DIR goes HIGH; flag indicates input prepared for valid data
4. DOR goes LOW; flag indicates FIFO empty
5. Q_{n} outputs go LOW (only last bit will be reset).

(1) HC : $\mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{1}=G N D$ to V_{CC}. HCT : $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 10 Waveforms showing the $\overline{\mathrm{SO}}$ input to DOR output propagation delay, the $\overline{\mathrm{SO}}$ pulse widths and maximum pulse frequency.

Notes to Fig. 10

1. DOR HIGH; no data transfer in progress, valid data is present at output stage
2. $\overline{\mathrm{SO}}$ set HIGH; results in DOR going LOW
3. DOR goes LOW; output stage "busy"
4. $\overline{\mathrm{SO}}$ set LOW; data in the input stage is unloaded, and new data replaces it as empty location "bubbles-up" to input stage
5. DOR goes HIGH; transfer process completed, valid data present at output after the specified propagation delay
6. Repeat process to unload the 3rd through to the 64th word from FIFO.
7. DOR remains LOW; FIFO is empty.

With FIFO empty; $\overline{\mathbf{S O}}$ is held HIGH in anticipation

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 11 Waveforms showing ripple through delay SI input to DOR output, DOR output pulse width and propagation delay from the DOR pulse to the Q_{n} output.

Notes to Fig. 11

1. FIFO is initially empty, $\overline{\mathrm{SO}}$ is held HIGH
2. SI pulse; loads data into FIFO and initiates ripple through process
3. DOR flag signals the arrival of valid data at the output stage
4. Output transition; data arrives at output stage after the specified propagation delay between the rising edge of the DOR pulse to the Q_{n} output
5. DOR goes LOW; data shift-out is complete, FIFO is empty again
6. $\overline{\text { SO }}$ set LOW; necessary to complete shift-out process. DOR remains LOW, because FIFO is empty.

Shift-in operation; high-speed burst mode

Note to Fig. 12
In the high-speed mode, the burst-in rate is determined by the minimum shift-in HIGH and shift-in LOW specifications. The DIR status flag is a don't care condition, and a shift-in pulse can be applied regardless of the flag. A SI pulse which would overflow the storage capacity of the FIFO is ignored.

Shift-out operation; high-speed burst mode

Note to Fig. 13

In the high-speed mode, the burst-out rate is determined by the minimum shift-out HIGH and shift-out LOW specifications. The DOR flag is a don't care condition and an $\overline{\mathrm{SO}}$ pulse can be applied without regard to the flag.

5-Bit x 64-word FIFO register; 3-state

Fig. 14 Waveforms showing hold and set-up times for D_{n} input to $S I$ input.

(1) HC : $\mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}.

HCT : $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 15 Waveforms showing $\overline{\mathrm{SO}}$ input to Q_{n} output propagation delays and output transition time.

Fig. 16 Waveform showing the $\overline{\mathrm{MR}}$ input to SI input removal time.

(1) HC : $\mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. HCT : $V_{M}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 17 Waveforms showing the 3-state enable and disable times for input $\overline{\mathrm{OE}}$.

APPLICATION INFORMATION

Fig. 18 Expanded FIFO (parallel and serial) for increased word length; 10 bits wide $\times 64 \mathrm{n}$-bits.

Fig. 19 Expanded FIFO for increased word length; 64 words $\times 10$ bits.

Note to Fig. 19

The "7404" is easily expanded to increase word length. Composite DIR and DOR flags are formed with the addition of an AND gate. The basic operation and timing are identical to a single FIFO, with the exception of an added gate delay on the flags.

Fig. 20 Expanded FIFO for increased word length.

Note to Fig. 20

This circuit is only required if the SI input is constantly held HIGH, when the FIFO is empty and the automatic shift-in cycles are started or if $\overline{\mathrm{SO}}$ output is constantly held HIGH, when the FIFO is full and the automatic shift-out cycles are started (see Fig. 8 and Fig.10).

Expanded format

Figure 21 shows two cascaded FIFOs providing a capacity of 128 words $\times 5$ bits. Figure 22 shows the signals on the nodes of both FIFOs after the application of a SI pulse, when both FIFOs are initially empty. After a ripple through delay, data arrives at the output of $\mathrm{FIFO}_{\mathrm{A}}$. Due to $\overline{\mathrm{SO}}_{\mathrm{A}}$ being HIGH , a $\mathrm{DOR}_{\mathrm{A}}$ pulse is generated. The requirements of SI_{B} and $D_{n B}$ are satisfied by the $D O R_{A}$ pulse width and the timing between the rising edge of $D O R_{A}$ and $Q_{n A}$. After a second ripple through delay, data arrives at the output of $\mathrm{FIFO}_{\mathrm{B}}$.
Figure 23 shows the signals on the nodes of both FIFOs after the application of a $\overline{\mathrm{SO}}_{\mathrm{B}}$ pulse, when both FIFOs are initially full. After a bubble-up delay a DIR_{B} pulse is generated, which acts as a $\overline{\mathrm{SO}}_{\mathrm{A}}$ pulse for $\mathrm{FIFO} \mathrm{A}_{\mathrm{A}}$. One word is transferred from the output of $\mathrm{FIFO}_{\mathrm{A}}$ to the input of FIFO_{B}. The requirements of the $\overline{\mathrm{SO}}_{A}$ pulse for FIFO_{A} is satisfied by the pulse width of $\mathrm{DOR}_{\mathrm{B}}$. After a second bubble-up delay an empty space arrives at D_{nA}, at which time DIR_{A} goes HIGH.
Figure 24 shows the waveforms at all external nodes of both FIFOs during a complete shift-in and shift-out sequence.

Fig. 21 Cascading for increased word capacity; 128 word $\times 5$ bits.

Note to Fig. 21

The " 7404 " is easily cascaded to increase word capacity without any external circuitry. In cascaded format, all necessary communications are handled by the FIFOs. Figures 22 and 23 demonstrate the intercommunication timing between $\mathrm{FIFO}_{\mathrm{A}}$ and $\mathrm{FIFO}_{\mathrm{B}}$. Figure 24 provides an overview of pulses and timing of two cascaded FIFOs, when shifted full and shifted empty again.

Fig. 22 FIFO to FIFO communication; input timing under empty condition.

Notes to Fig. 22

1. $\mathrm{FIFO}_{\mathrm{A}}$ and $\mathrm{FIFO}_{\mathrm{B}}$ initially empty, $\overline{\mathrm{SO}}_{\mathrm{A}}$ held HIGH in anticipation of data
2. Load one word into FIFO_{A}; SI pulse applied, results in DIR pulse
3. Data-out ${ }_{A} /$ data-in ${ }_{B}$ transition; valid data arrives at FIFO $_{A}$ output stage after a specified delay of the DOR flag, meeting data input set-up requirements of FIFO_{B}
4. DOR_{A} and SI_{B} pulse HIGH ; (ripple through delay after $\mathrm{SI}_{\mathrm{A}} \mathrm{LOW}$) data is unloaded from FIFO_{A} as a result of the data output ready pulse, data is shifted into FIFO_{B}
5. DIR $_{B}$ and $\overline{S O}_{A}$ go LOW; flag indicates input stage of FIFO $_{B}$ is busy, shift-out of FIFO_{A} is complete
6. DIR_{B} and $\overline{\mathrm{SO}}_{\mathrm{A}}$ go HIGH automatically; the input stage of $\mathrm{FIFO}_{\mathrm{B}}$ is again able to receive data, $\overline{\mathrm{SO}}$ is held HIGH in anticipation of additional data
7. $\mathrm{DOR}_{\mathrm{B}}$ goes HIGH ; (ripple through delay after $\mathrm{SI}_{B} \mathrm{LOW}$) valid data is present one propagation delay later at the FIFO_{B} output stage.

Fig. 23 FIFO to FIFO communication; output timing under full condition.

Notes to Fig. 23

1. $\mathrm{FIFO}_{\mathrm{A}}$ and $\mathrm{FIFO}_{\mathrm{B}}$ initially full, SI_{B} held HIGH in anticipation of shifting in new data as an empty location bubbles-up
2. Unload one word from $\mathrm{FIFO}_{\mathrm{B}} ; \overline{\mathrm{SO}}$ pulse applied, results in DOR pulse
3. DIR $_{B}$ and $\overline{\mathrm{SO}}_{A}$ pulse HIGH ; (bubble-up delay after $\overline{\mathrm{SO}}_{B}$ LOW) data is loaded into $\mathrm{FIFO}_{\mathrm{B}}$ as a result of the DIR pulse, data is shifted out of $\mathrm{FIFO}_{\mathrm{A}}$
4. DOR_{A} and SI_{B} go LOW ; flag indicates the output stage of FIFO_{A} is busy, shift-in to FIFO_{B} is complete
5. DOR_{A} and SI_{B} go HIGH ; flag indicates valid data is again available at FIFO_{A} output stage, SI_{B} is held HIGH , awaiting bubble-up of empty location
6. $\mathrm{DIR}_{\mathrm{A}}$ goes HIGH ; (bubble-up delay after $\overline{\mathrm{SO}}_{\mathrm{A}} \mathrm{LOW}$) an empty location is present at input stage of $\mathrm{FIFO}_{\mathrm{A}}$.

Fig. 24 Waveforms showing the functionality and intercommunication between two FIFOs (refer to Fig.19).

Note to Fig. 24

Sequence 1 (both FIFOS empty, starting SHIFT-IN process)

After a $\overline{M R}$ pulse has been applied FIFO $_{A}$ and FIFO $_{B}$ are empty. The DOR flags of FIFO $_{A}$ and FIFO $_{B}$ go LOW due to no valid data being present at the outputs. The DIR flags are set HIGH due to the FIFOs being ready to accept data. $\overline{\mathrm{SO}}_{\mathrm{B}}$ is held HIGH and two SI_{A} pulses are applied (1). These pulses allow two data words to ripple through to the output stage of FIFO_{A} and to the input stage of FIFO_{B} (2). When data arrives at the output of $\mathrm{FIFO}_{\mathrm{B}}$, a $\mathrm{DOR}_{\mathrm{B}}$ pulse is generated (3). When $\overline{\mathrm{SO}}_{\mathrm{B}}$ goes LOW, the first bit is shifted out and a second bit ripples through to the output after which $\mathrm{DOR}_{\mathrm{B}}$ goes HIGH (4).

Sequence 2 (FIFO $_{B}$ runs full)

After the $\overline{\mathrm{MR}}$ pulse, a series of 64 SI pulses are applied. When 64 words are shifted in, DIR ${ }_{B}$ remains LOW due to $\mathrm{FIFO}_{\mathrm{B}}$ being full (5). $\mathrm{DOR}_{\mathrm{A}}$ goes LOW due to FIFO $_{A}$ being empty.

Sequence 3 (FIFO $_{A}$ runs full)

When 65 words are shifted in, $\mathrm{DOR}_{\mathrm{A}}$ remains HIGH due to valid data remaining at the output of $\mathrm{FIFO}_{\mathrm{A}} . \mathrm{Q}_{\mathrm{nA}}$ remains HIGH, being the polarity of the 65th data word (6). After the 128th SI pulse, DIR remains LOW and both FIFOs are full (7). Additional pulses have no effect.

Sequence 4 (both FIFOs full, starting SHIFT-OUT process)

SI_{A} is held HIGH and two $\overline{\mathrm{SO}}_{\mathrm{B}}$ pulses are applied (8). These pulses shift out two words and thus allow two empty locations to bubble-up to the input stage of $\mathrm{FIFO}_{\mathrm{B}}$, and proceed to $\mathrm{FIFO}_{\mathrm{A}}$ (9). When the first empty location arrives at the input of $\mathrm{FIFO}_{\mathrm{A}}$, a $\mathrm{DIR}_{\mathrm{A}}$ pulse is generated (10) and a new word is shifted into $\mathrm{FIFO}_{\mathrm{A}} . \mathrm{SI}_{\mathrm{A}}$ is made LOW and now the second empty location reaches the input stage of $\mathrm{FIFO}_{\mathrm{A}}$, after which DIR $_{\mathrm{A}}$ remains HIGH (11).

Sequence 5 ($\mathrm{FIFO}_{\mathrm{A}}$ runs empty)

At the start of sequence $5 \mathrm{FIFO}_{\mathrm{A}}$ contains 63 valid words due to two words being shifted out and one word being shifted in, in sequence 4. An additional series of $\overline{\mathrm{SO}}_{\mathrm{B}}$ pulses are applied. After $63 \overline{\mathrm{SO}}_{\mathrm{B}}$ pulses, all words from FIFO $_{A}$ are shifted into $\mathrm{FIFO}_{\mathrm{B}} . \mathrm{DOR}_{\mathrm{A}}$ remains LOW (12).

Sequence 6 ($\mathrm{FIFO}_{\mathrm{B}}$ runs empty)

After the next $\overline{\text { SO}}_{B}$ pulse, DIR $_{B}$ remains HIGH due to the input stage of $\mathrm{FIFO}_{\mathrm{B}}$ being empty. After another $63 \overline{\mathrm{SO}}_{\mathrm{B}}$ pulses, $\mathrm{DOR}_{\mathrm{B}}$ remains LOW due to both FIFOs being empty (14). Additional $\overline{\mathrm{SO}}_{\mathrm{B}}$ pulses have no effect. The last word remains available at the output Q_{n}.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

